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1. Introduction

DNA and RNA contain the genetic code of life. They typically oc-
cur in the form of long polymers that are subjected to high levels of
confinement. During cellular processes, modifications of the geometry
and topology of DNA and RNA can yield multi-stranded structures
such as R-loops. An R-loop is a 3-stranded structure composed of an
RNA-DNA complex and another single strand of DNA. Experimental
studies indicate that R-loops can play either destructive or regulatory
roles in cellular processes [1, 2, 3]. Thus, it is important to determine
the factors influencing R-loop formation and stability. It is known that
both DNA sequence and geometry/topology affect R-loop formation,
however, little is known about their geometric and topological entan-
glement properties.

In order to begin to model the geometric/topological features of R-
loops, in this work we develop two simplified Markov chain models of
R-loops: one model is for R-loop formation and the other is for R-loop
geometry.

Our simplified model for R-loop formation is inspired and informed
by the work of Ferrari and coworkers [4, 5] who are developing a richer,
data-informed sequence-dependent method for predicting the location
of R-loops based on a formal grammar model. Given a DNA sequence,
their model can be applied to predict the probabilities of R-loop forma-
tion along the DNA sequence. To complement their data-informed ap-
proach, we explore here the statistical properties of the simpler Markov
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chain model that underlies one of their formal grammar models. This
is a first step towards determining to what extent, if any, randomness
plays a role in R-loop formation.

Our simplified model of R-loop geometry is based on the standard
statistical mechanical lattice model for polymers in a slit (2-dimensional)
or tubular (3-dimensional) confinement [6, 7, 8]. We focus on a Markov
chain model for the simplest 2-dimensional case and investigate how
varying the transition probabilities affects the resulting R-loop geome-
try.

To explain our methods and results further, we first give more back-
ground about R-loops, formal grammar models for R-loops and also
lattice models of polymers. Following this, for each of the models stud-
ied, we give details about the methods used and results of the study.
Finally, we present conclusions and possible future directions.

2. Background and the Initial Questions

In this section, we provide background related to the project and
identify the questions that motivated this work.

R-loops are 3-stranded structures formed by an RNA-DNA complex
and a single strand of DNA, often appearing during transcription. De-
spite an increasing interest in R-loops from experimentalists, there are
few mathematical studies addressing R-loop structure and formation.
A first computational model for R-loop formation is presented in [9]
and it is based on the sequence analysis in [10]. This work focused
on identifying so-called R-loop forming sequences (RLFS) by analyzing
certain features of a given DNA sequence related to its CG-content.
This study was then expanded to develop a program for predicting and
exploring RLFS [11]. More recently, R-loop formation was examined
by means of a statistical mechanical equilibrium model and its software
implementation called “R-looper” [12]. This energy-based model takes
into account the DNA topology as well as the DNA sequence content
to predict where R-loops are more likely to appear. The same group
then developed a database, namely “RLBase”, to investigate R-loop
datasets [13]. We refer the reader to [2, 3] for a review of the factors
influencing R-loop formation and stability. In the next two subsections,
we review a formal grammar model for R-loops and some background
on lattice models of polymers.

2.1. Formal grammar model of R-loops overview. A formal gram-
mar is a system to generate words; it consists of a set of symbols (let-
ters), classified as terminals and non-terminals, and a set of production
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rules. The production rules specify how to rewrite non-terminal sym-
bols, so that successive applications of those rules yield words formed
by only terminals. In [5], the following regular grammar was proposed
to describe R-loop formation:

• Set of terminal symbols: A = {σ̂, σ, τ̂ , τ, α, ω};
• Set of non-terminal symbols: N = {S,Q1, Q2, Q3, Q4, Q5, Q6}

(S is called start symbol);
• Production rules:

S → σS | σ̂S | σQ1

Q1 → αQ2

Q2 → τ̂Q3

Q3 → τQ3 | τ̂Q3 | τQ4

Q4 → ωQ5

Q5 → σ̂Q6

Q6 → σQ6 | σ̂Q6 | ε.

(1)

Here, σ and σ̂ (respectively, τ and τ̂) represent the length of one half-
turn of DNA:DNA (respectively, RNA:DNA) complex, with the con-
vention that stable interactions are denoted with a ‘ ˆ ’ (the stability
of a symbol depends on the corresponding CG-content); α and ω de-
fine the initiation and termination sites of an R-loop, respectively. Note
that ε denotes the termination of the DNA sequence. Figure 1, inspired
by Figure 4 in [5], provides an example of an R-loop described by the
word “...σσ̂σσατ̂ττωσ̂...” from the alphabet A = {σ̂, σ, τ̂ , τ, α, ω}.

σ σ̂ σ σ α τ̂ τ τ σ̂ω

R-loop

Figure 1. Diagram illustrating an R-loop and its corre-
sponding word (inspired by Figure 4 in [5]). RNA-DNA
complex: red/green strands, free DNA: black strand.

Since regular grammars are related to Markov chains, we utilize
model 1 as the basis to explore R-loop formation and R-loop geometry
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in this project. In a complementary direction, Ferrari and coworkers
are currently developing a probabilistic model for R-loop prediction
using experimental data [4, 12]. R-loop prediction involves predicting
the probability of forming an R-loop at a specific position in a given
DNA sequence.

Initial Question 1: What Markov chain model underlies the formal
grammar model of (1)? This is answered in Section 3.1 followed by a
thorough study of the Markov chain.

2.2. Lattice models of polymers in tubes overview. A polymer
is considered to be any large molecule that is made of repeated molec-
ular units. Thus DNA and RNA can be thought of as polymers and
indeed statistical mechanics models of polymers have proved useful for
modelling the average conformational (topological/geometrical) prop-
erties of DNA in solution [14]. Such models include lattice models such
as self-avoiding walk and polygon models.

For polymers under confinement conditions, the standard lattice
model considers walks or polygons confined to a tubular sublattice of
the simple cubic lattice [6]. In this case, the polymer is represented
by a set of vertices in Z3 that are joined by unit edges. For tubular
confinement, the vertices are bounded in the y and z directions, with
free growth allowed in the positive x-direction. For example, for the
(L,M)-tube, the vertex coordinates must satisfy: x > 0, 0 < y ≤ L,
0 < z ≤ M . In the case of M = 0, the tube is 2-dimensional and
called a slit. A mathematical advantage of lattice tube models is that
they can often be studied exactly using transfer matrix and/or Markov
chain methods. Soteros and coworkers [7, 8] have used such models to
characterize the entanglement complexity of 2-stranded and 4-stranded
polymers confined to a lattice tube.

Initial Question 2: What lattice tube model is useful for modelling
the geometry/topology of R-loops? This is explored in Section 3.2
followed by a thorough study of a simple first-step model.

3. New Directions

As discussed above, the initial questions were to develop a Markov
chain model associated with the formal grammar model of (1) and to
develop a lattice tube model for R-loops. In order to address either of
these questions, there was much to learn about both formal grammar
and lattice polymer models. During the learning process, it was deter-
mined that a starting point at connecting the two approaches was to
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use Markov chain models and we turned our attention to two Markov
chain models, one for R-loop formation and the other for R-loop ge-
ometry. The directions pursued are summarized next.

3.1. Markov chain model of R-loop formation. Initial Question
1 was solved first.

Figure 2. Left: Regular grammar from [5], with proba-
bilities determined by using experimental data (ongoing
work with Ferrari and coworkers [4]). Right: Markov
chain state transition diagram corresponding to the reg-
ular grammar on the left.

To fit with the regular grammar rules, we suppose we have a dis-
crete time Markov chain {Xn, n = 0, 1, 2, ...} such that Xn ∈ S =
{σ̂S, σS, σQ1, αQ2, τ̂Q3, τQ3, τQ4, ωQ5, σ̂Q6, σQ6, ε}. A state transi-
tion diagram for the chain is shown in Figure 2 (right) (note that
when the context is clear, some symbols have been shortened).Taking
into account the formal grammar rules, the general one-step transition
probability matrix is given by:
Pg =

σ̂S σS σQ1 αQ2 τ̂Q3 τQ3 τQ4 ωQ5 σ̂Q6 σQ6 ε



σ̂S p1 p2 1− p1 − p2 0 0 0 0 0 0 0 0
σS p1 p2 1− p1 − p2 0 0 0 0 0 0 0 0

σQ1 0 0 0 1 0 0 0 0 0 0 0

αQ2 0 0 0 0 1 0 0 0 0 0 0
τ̂Q3 0 0 0 0 p3 p4 1− p3 − p4 0 0 0 0

τQ3 0 0 0 0 p3 p4 1− p3 − p4 0 0 0 0
τQ4 0 0 0 0 0 0 0 1 0 0 0
ωQ5 0 0 0 0 0 0 0 0 1 0 0

σ̂Q6 0 0 0 0 0 0 0 0 p5 p6 1− p5 − p6
σQ6 0 0 0 0 0 0 0 0 p5 p6 1− p5 − p6
ε 0 0 0 0 0 0 0 0 0 0 1

. (2)

The entry in the ith row and jth column of Pg gives the one-step transi-
tion probability P (Xn+1 = jth symbol|Xn = ith symbol) for any choice
of integer n ≥ 0. A sequence X0X1...Xn from S yields a word Y0Y1...Yn

from A upon deletion of all the rule symbols (capital letters). The
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well-known theory for finite, time-homogeneous discrete-time Markov
chains [15, 16, Chapter 11] gives that the probability row vector for
the distribution of Xn can be obtained by multiplying the probability
row vector for the initial distribution (that of X0) by P n

g . From this
distribution, one can determine, for example, the probability that the
chain is part of an R-loop at the nth time step. Furthermore, Pg corre-
sponds to an absorbing Markov chain where state ε is the lone absorbing
state. The theory of finite absorbing Markov chains is well known [15,
16, Chapter 11]. In particular many other quantities of interest can
be obtained from the fundamental matrix Ng for an absorbing Markov
chain. In this case Ng = (I − Qg)

−1 with Qg the 10 × 10 submatrix
of Pg obtained by deleting its last row and column. The entry in the
ith row and jth column of Ng gives the expected number of time-steps
that the chain visits the jth state (before being absorbed) given that
it started in the ith state. Thus the expected time to absorption, after
starting in the ith state, can be obtained by summing the ith row of
Ng. This will give the expected total length of the word associated with
a DNA sequence. To obtain the expected length of an R-loop (given
starting state i for the word) one sums over the entries in the ith row
of Ng that correspond to states that can occur in an R-loop: α, τ̂ , τ, ω.

With only 6 variables it is possible to obtain an exact solution for
the fundamental matrix (for example using SageMath). The chain can
also be explored by Monte Carlo computer simulation. We focussed
on the choice of p1, ..., p6 as indicated in Figure 2 (left) - these were
provided by Ferrari et al from analysis of the experimental data. See
Section 4.1 for the exact and simulation results.

In the model of [4], letters are assigned to DNA subsequences based
on experimental data [4, 12]; moreover, the length of a DNA sequence
is fixed. On the other hand, for the Markov model studied here, the
letters are assigned randomly according to a Markov process. Hence
the Markov model generates sequences of random length and is lacking
the subsequence-dependent information of the Ferrari et al model [4].
So this begs the question, why study this simplified Markov model? To-
wards answering this, we expanded on the Initial Question 1 as follows.

Question 1(a): What are the general properties of this simplified
Markov model?
Question 1(b): Does this simplified Markov model capture any of the
features of the experimental results in [12, Figure 5]?
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3.2. Markov chain model of R-loop geometry. In order to model
R-loop geometry, we focused on a model that uses polygons in the
(2, 0)-tube, a slit in the square lattice. Polygons in this slit have their
left-most edges in the plane x = 0 and right-most edges in an integer
plane x = m where m is called the span of the polygon. See Fig-
ure 3 (left) for an example of a span 8 polygon in the slit. To model an
R-loop, we use the top walk of the polygon (a walk from x = 0, y = 1 to
x = m, y = 1 that has y-coordinates greater than or equal to 1) to rep-
resent the RNA-DNA complex of the R-loop and the remaining bottom
walk to represent the free DNA strand. See for example Figure 3 (left)
where the top walk is coloured red and the bottom walk is black.

Figure 3. Left: An example of a polygon representing
an R-loop embedded in the (2, 0)-tube (slit). The top
(red/green) walk represents the RNA-DNA complex and
the bottom walk represents the free DNA strand. The
letters underneath each half-integer plane denote the col-
umn state for that position in the R-loop polygon. Right:
The state transition diagram used in the R-loop geome-
try Markov chain model.

Such polygons have been well studied using transfer matrix methods
and we use the notation of Klein [6] to develop a Markov chain model.
For this, we note that a polygon can be represented as a sequence
of column states where in the (2,0)-tube a column state is completely
defined by the location of the two edges in a particular half-integer x-
plane. That is for a polygon with span m, the column state at the ith
position will be defined by the location of the 2 edges in it at the plane
x = i − 1/2. If the two edges are at height y = 1 and y = 2 then the
column state is labelled b; if they are at y = 0 and y = 2, it is labelled
a; and if at y = 0 and y = 1, it is labelled c. Thus a polygon can be
represented by a word on the alphabet {a, b, c}. See Figure 3 (left) for
the word associated with the particular polygon shown. The letters
below the polygon denote the column states at positions i = 1, ..., 8 for
this polygon with span 8.

7



To properly generate a polygon, the next letter in the word must
correspond to a column state that can geometrically follow the previous
letter. The state transition diagram in Figure 3 (right) indicates which
column state transitions are allowed. We can thus consider a Markov
chain {Wn, n = 0, 1, ...} where Wn ∈ {a, b, c} and the letters correspond
to column states in the lattice. This chain has the general one-step
transition probability matrix defined as follows:

Ptube =

a b c a q1 q2 1− q1 − q2
b q3 1− q3 0

c q4 0 1− q4
. (3)

The entry in the ith row and jth column of Ptube gives the one-step
transition probability P (Wn+1 = jth state|Wn = ith state) for any
choice of integer n ≥ 0. A sequence W0W1...Wn yields a sequence of
column states that form a polygon in the (2, 0)-tube. The well-known
theory for finite, time-homogeneous discrete-time Markov chains [15,
16, Chapter 11] gives that the probability row vector for the distribu-
tion of Wn can be obtained by multiplying the probability row vector
for the initial distribution (that of W0) by P n

tube. From this distribu-
tion, one can determine, for example, the probability that the chain
is in a given column state at the nth time step. Furthermore, in the
case that qi > 0, i = 1, 2, 3, 4, the chain is a regular Markov chain and
has a stationary distribution. The theory of finite regular discrete-time
time-homogeneous Markov chains is well known [15, 16, Chapter 11].
In particular the stationary distribution and other quantities of inter-
est can be obtained from its fundamental matrix Ztube. In this case
Ztube = (I − Ptube + C)−1 with C the 3 × 3 matrix of all ones. The
probability row vector corresponding to the stationary distribution can
then be obtained by multiplying a row vector of ones by Ztube. Mean
recurrence and mean first passage times can then be obtained using
the entries of the stationary vector and Ztube.

With only 4 variables, the fundamental matrix for this Markov chain
can be solved exactly (for example in SageMath) as a function of
q1, ..., q4.

To address Initial Question 2 for this model, the qi’s need to be
chosen appropriately for modelling R-loop geometry. For this we assign
the probabilities q1 − q4 in Equation 3 to take into account geometric
symmetry but also to allow the top and bottom walks to have different
amounts of flexibility. If a state transition results in a bending (right
angle) of the bottom single stranded DNA segment, we assign it the
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probability pb; note that the b in pb stands for the bottom ‘black’ walk
(or ‘blue’ used in future graphs) and is not related to the state b.
Similarly, if a state transition results in a bending of the top RNA-
DNA complex, we assign it the probability pr, where r stands for the
top ‘red’ segment. Recalling the polygon in Figure 3, we see that a
transition from state b to state a results in a bending of the black walk;
thus the transition is assigned the probability pb. Similarly, a transition
from state c to state a results in a bending of the red walk and thus is
given the probability pr. This yields the following transition probability
matrix:

Ppr,pb =

a b c a 1− pb − pr pb pr
b pb 1− pb 0

c pr 0 1− pr
. (4)

Since the top walk represents a double helix, it is expected to be
less flexible than the bottom walk representing a single DNA strand.
Hence we assume pr < pb. In particular, more flexibility is expected to
mean more right angles (bends) on average. This leads to a refinement
of Initial Question 2.

Question 2(a): What are the geometric properties of the generated
R-loops as a function of pr, pb?

4. Progress

In this section, we discuss our computational work to address Ques-
tions 1(a),1(b), and 2(a).

4.1. Progress on the Markov chain model of R-loop formation.
Significant progress has been made in our ongoing research on model-
ing R-loop formation using Markov chains. As part of our efforts we
developed several computer programs:

• M. Shvets' Python Code 1: This code, written in Python 3,
generates words from the alphabet A using a Monte Carlo sim-
ulation approach. The code starts at a given state and chooses
the next state randomly based on the current state and the
one-step transition probabilities. The chain progresses step by
step and the user can advance to the next step by pressing
enter, allowing for easy visualization of the generated words.
The code also includes the option to generate a series of ran-
dom words and calculate the average length of the R-loops. See
Figure 4 (left) for sample output. Furthermore, it generates a
frequency table of the start positions of the R-loops, which is
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saved to a csv file for further analysis. The code is modular and
can be easily modified to generate different words and frequency
tables.

• M. Shvets' Scala Code 1: This code, written in Scala, fo-
cuses on efficiently collecting statistical data during the simula-
tion of R-loop formation. It incorporates tracker functions that
are called after each state transition to keep track of R-loops
and their lengths. These tracker functions can be combined, al-
lowing for multiple tracker functions to be used together. The
code also includes a main function that runs the simulation for
a given number of iterations and saves the results to a csv file,
which can be easily analyzed and plotted to generate graphs.

• M. Sun's Python Code 1: This code, written in Python 3,
also uses the Markov chain defined in (2) to simulate the gener-
ation of words from the alphabet A. In addition it is designed
to pick out words with a pre-defined length. The final outputs
are the average length of an R-loop and a graph showing the
probability of being part of an R-loop at each time step within
a fixed length word.

• J. Li's SageMath Code 1: This code, written in SageMath
Version 9.7 in CoCalc, solves for the fundamental matrix of
the absorbing Markov chain as a function of p1, ..., p6. The
results are then used to obtain exact values for the expected
total word length, the expected length of an R-loop, and the
position-dependent probability of being in an R-loop.

The results regarding Question 1(a) are as follows. We focused
on the specific choice of pi’s from Figure 2 (left): p1 = 0.21, p2 =
0.71, p3 = 0.52, p4 = 0.35, p5 = 0.67, p6 = 0.24. We explored the
average word length and the average R-loop length exactly, via the
SageMath program, and statistically, via the Monte Carlo simulation
programs. States of an R-loop are considered to be: {α, τ, τ̂ , ω}. The
results from both approaches were consistent with each other. For ex-
ample, the following were obtained for the case that X0 = σ̂S.

Average Word length (including first ε):
      
Simulations: 600 time-steps, 10000 replications: 36.296 +/- 0.606 letters;

Exact: 36.3034188034188 letters.
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Average R-loop length:

Simulations: 600 time-steps, 1000 replications: 10.568 +/- 0.461 let-
ters;

Exact: 10.6923076923077 letters.

We also calculated the probability of a position in a word being part
of an R-loop (i.e. in one of the states {α, τ, τ̂ , ω}). Figure 4 (right)
shows the exact results from the SageMath program for the case X0 =
σ̂S. The Monte Carlo results (not shown) are consistent.

Figure 4. Left: Sample output words from M. Shvets’
Python Code 1 with R-loops colored in green. Right:
The probability of the chain being in an R-loop state
at time-step n, i.e. P (Xn ∈ {α, τ, τ̂ , ω}|X0 = σ̂S), n =
0, 1, 2, ... generated from J. Li’s SageMath Code 1.

Regarding Question 1(b), we consider whether we can make any con-
nections between the Markov model results and those for DNA. The
probabilities used were based on an analysis of data for DNA sequences
of length 1500-1800 nucleotides and letters were assumed to be asso-
ciated with subsequences 4 nucleotides in length [4, 12]. For one ex-
periment on such a DNA sequence, the average length of an R-loop
was about 130 nucleotides [12, Figure 5 (C) (top)]. So R-loop length
is roughly one tenth DNA length while from our random model it is
closer to one third. [12, Figure 5 (A) (bottom)] shows experimental
(red) probabilities of being in an R-loop as a function of DNA sequence
position. For this experiment, the probability starts out very low and
only begins to rise near the 500th-600th nucleotide, then reaches a
maximum of about 0.5 around the 700th nucleotide (near half way
along the DNA sequence) and then drops to very low again around the
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800th-850th nucleotide. While for our Markov model the maximum is
close to 0.4 and is achieved around the 10th letter, which is only about
one third of the way along an average word.

One major problem with the Markov model is that the word length
is allowed to vary. A better way to compare the model to experimental
data would be to focus only on words of length 375 to correspond to
a DNA sequence of length 1500. However, based on the exact calcu-
lations, the probability of generating a word of length 375 from the
Markov model is on the order of 10−11. Calculating conditional prob-
abilities exactly for word length 375 seemed to be problematic and
Monte Carlo generation was not possible given the time limitations of
the project. As such, to explore the effect of fixing the word length
on the model properties, we focused on generating words of length 100
from the model - the probability of such words being on the order of
10−4. Figure 5 shows the results from the Python simulation for the
position-dependent probability of being part of an R-loop. We see that
the distribution is much broader and the maximum is slightly lower
than for the unconditioned case. The location of the peak is slightly
greater than half way along the word. Based on this, it seems unlikely
that just conditioning on words of a fixed length will capture all the
features of the experimental data. Thus, not unexpectedly, more in-
formation about the DNA sequence needs to be incorporated into the
model.

Figure 5. The probability of being in an R-loop as a
function of the position (time-step) in a word of length
100. Results were generated from M. Sun’s Python Code
1 with 106 replications.
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4.2. Progress on the Markov chain model of R-loop geome-
try. We worked on developing a Markov chain model to explore the
geometry of R-loops using a lattice tube model.

• M. Shvets' Python Code 2: The code, written in Python 3,
implements a simulation of the Markov chain of column states
within the lattice tube using a Monte Carlo approach. The
probabilities of transitioning to different states in the lattice
tube are determined by the probabilities of red (top walk) and
blue (bottom walk) bends, denoted as pr and pb respectively.
The red strand represents the RNA-DNA complex and is less
flexible, while the blue strand represents DNA and is more flex-
ible. See Figure 6 (top) for sample output. The code is modu-
lar, making it easy to customize various parameters such as the
probabilities of transitioning to different states, the length of
the chain, and the number of chains to generate. The chain is
visualized both as a console output and as a diagram using Uni-
code characters, providing a clear representation of the chain’s
geometry. Furthermore, the code allows for counting the bends
in the chain and recording the data, which can be plotted as a
histogram using libraries such as Matplotlib and NumPy. This
enables us to analyze the distribution of bends in the R-loop
geometry and gain insights into the overall structure.

• M. Sun's Python Code 2: This code, written in Python 3,
also simulates the Markov chain of column states in the (2, 0)-
tube. The output graph shows the coordinates of the two
strands and also visualizes the sequence of column states. See
Figure 6 (bottom) for sample output.

Regarding Question 2(a), Figure 7 illustrates the conclusions of our
study so far. Namely, as expected, favouring bends in the bottom walk
over bends in the top walk leads to the majority of bends being in the
bottom walk. We also note that the stationary distribution for the
Markov chain has been solved exactly and the Monte Carlo results for
it are consistent. Obtaining the exact bend distribution is also possible
but this work has yet to be completed.
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Figure 6. Top: Sample output of M. Shvets’ Python
Code 2 for span 100. Bottom: Sample output of M.
Sun’s Python Code 2 for span 50. In both graphs, the
RNA-DNA complex is in red and the free DNA is in blue;
bending parameters are pr = 0.1, pb = 0.5.

Figure 7. Histograms of bend counts in R-loops for the
RNA-DNA complex (red), free DNA (blue), and total
bends (grey).

5. Conclusions and Future Directions

In summary, two Markov models have been studied related to mod-
elling R-loops. Exact and Monte Carlo analyses have been performed
for each. The results from both approaches are consistent. For the
model of R-loop formation, we conclude that a purely random model is
not sufficient to capture the experimental data about R-loop formation
in DNA. For the model of R-loop geometry, we found even a simplified

14



model can take into account differing flexibility for the components of
an R-loop.

Future directions will involve expanding the study of the R-loop ge-
ometry; for example, by visualizing lattice tube configurations in the
3-dimensional space via KnotPlot [17]. This will require understand-
ing how to assign a letter from the alphabet A = {σ̂, σ, τ̂ , τ, α, ω} to
geometric configurations, as well as incorporating experimental infor-
mation into the model.
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