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1. Introduction

Genome-wide association studies (GWASs) are a research approach
used to identify genetic variations associated with complex diseases.
This process works by scanning many individual single nucleotide poly-
morphisms (SNPs), that make up a genome, to identify which SNPs are
statistically significant to the trait/disease of interest[1]. However, tra-
ditional single SNP-wise testing methods for identifying associations
tend to lack power when sample sizes are small. Large sample sizes
are needed when testing millions of SNPs to ensure reliable statistical
power[1][2][3].

Knowing this information, we can utilize machine learning (ML)
methods to help bridge the gap caused by small sample sizes. ML
has the ability to identify potentially relevant SNPs that may have
been missed[4].

This report will outline the ML methods used on a Department of
Defense (DoD) Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, which is a collaborative study with a small sample size, to
identify relevant SNPs to Clinical Dementia Rating (CDR) scores of
participants. We will also explore the biological importance of gene
pathways associated with identified SNPs.

2. Data

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https:
/adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner,
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MD. The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

The datasets compiled by ADNI contain the genotypic, phenotypic,
and demographic information of participants in addition to cognitive
measurements like CDR, Mini-Mental State Examination (MMSE),
and Alzheimer’s Disease Assessment Scale (ADAS).

2.1. Data Preprocessing. First, we had to perform quality control
(QC) on the data set. We used a popular toolset called PLINK[5]. This
software cleans the data by checking for low minor allele frequencies,
deviations from the Hardy-Weinberg equilibrium, population stratifi-
cation, and any other confounding variables such as unequal sex pro-
portions. Next, we used imputation to deal with missing values. We
used a simple imputation method. If the variable was categorical, the
missing value in the column would be replaced with the mode, whereas
if the variable was continuous, the missing value would be replaced
with the mean.

2.2. Outcome. On top of all that, there was a severe positive skew
for our outcome variable, CDR. When a severe skew exists, linear re-
gression can lead to biased estimates and inaccurate results. However,
we dichotomized the CDR scores to use in logistic regression. The
scores were adjusted using a predetermined threshold of 0.5[6], where
scores below 0.5 have no cognitive impairment, while scores equal to
or greater than 0.5 have some degree of cognitive impairment (mild to
severe).

Table 1 outlines the statistics of the newly defined CDR categories.
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Table 1. Summary statistics of the dichotomized CDR
categories

3. Method

3.1. Traditional Single SNP Association Testing. Once we had
obtained the clean dataset, we wanted to utilize traditional GWAS
regression methods to find associations. Normally linear regression
would be used, but since we dichotomized the CDR scores, logistic
regression was used.

The following logistic regression model:

logit(π) = β0 + β1SNPi

where π is the probability of having some degree of cognitive impair-
ment, adjusted by age, MMSE, ADAS, Apolipoprotein E4 (ApoE4),
ethnicity, and top 5 principal components (pcs), was used to screen the
significance of the SNPs. Since none of the SNPs were concluded to be
statistically significant, we moved on to using ML to select the impor-
tant biomarkers from the top 1000 SNPs from the logistic regression.

3.2. Machine Learning: Elastic Net. We took the top 1000 SNPs
from logistic regression and input them into the elastic net penalized re-
gression which operates by utilizing the elastic net penalty to minimize
the following objective function [7]:
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(1) L(λ1, λ2,β) = |y −Xβ|2 + λ2

p∑
j=1

βj
2 + λ1

p∑
j=1

|βj|

The elastic net penalized regression is particularly helpful due to its
ability to do shrinkage and variable selection simultaneously. However,
this variable selection is quite dependent on the values of λ1 and λ2

which can be k-fold cross-validated (i.e 5 fold) using the glmnet [8]
package in R.

3.3. Gene Enrichment Analysis. Mapping the SNPs to the genes
of an associated pathway is essential to understand the underlying
mechanisms of the disease/trait of interest. Here, we used SNPnexus
(https://www.snp-nexus.org/v4/) to first map the significant SNPs
to their genes. We then used the web-based tool for gene enrichment
analysis, EasyGSEA (https://tau.cmmt.ubc.ca/eVITTA/easyGSEA_
demo/). The EasyGSEA database contains KEGG, WikiPathways,
DrugBank v5-1-8, and DisGeNET, which are disease-related gene sets
to map the selected genes from SNPnexus to their biological pathways.

4. Results

4.1. Single SNP Association Testing. After applying the tradi-
tional logistic regression GWAS method on our dataset, none of the
SNPs tested appear to be significant since they don’t extend beyond
the genome-wide significance threshold in figure 1. We will now explore
the results when using ML techniques.

4.2. Machine Learning: Elastic Net. The logistic regression model
allows us to screen the SNPs from most to least significant. The top
1000 SNPs from logistic regression were used in the elastic net penalized
regression. By taking the top 1000, we can avoid the computational
limitations of applying elastic net to millions of SNPs.

Using the elastic net criterion, 136 out of the top 1000 SNPs were
selected to be significant to CDR/cognitive decline. The elastic net
selected SNPs are shown in figure 1 as red dots.
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Figure 1. Manhattan plot from the single SNP asso-
ciation testing. The blue horizontal line represents a
suggestive line (p-value=1 ∗ 10−5). The horizontal red
line represents the genome-wide significance threshold
(p-value=5 ∗ 10−8). Red dots represent SNPs selected
by elastic net.

4.3. Gene Enrichment Analysis. Using the 136 selected SNPs from
elastic net in gene enrichment analysis, some prominent gene pathways
were identified. The most notable pathway was the positive regulation
of interleukin-2 (IL-2). This pathway refers to the activation of IL-2. A
couple of studies have identified the partial role of IL-2 in cognitive de-
cline. For example, Liang et al. identified strong correlations between
the levels of IL-2 in amnestic mild cognitive impaired participants and
their cognitive scores. They concluded lower levels of IL-2 are associ-
ated with declined cognitive scores. They even found that IL-2 levels
may be better at identifying cognitive impairment compared to the
common Aβ and tau biomarkers.[9]

5. Conclusion

This report demonstrates the ability to use ML methods to identify
significant SNP to disease/trait associations that may have been missed
in traditional single SNP association testing due to small sample sizes.
We have shown this using the DoD ADNI dataset with a small sample
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size. It shows that ML can become an effective tool that fits into the
repertoire of future GWASs. In addition, we have illustrated the use of
gene enrichment analysis to identify prominent gene pathways related
to cognitive decline. Hopefully, this research will spark the interest
to use other ML methods in GWASs when traditional methods are
inconclusive.
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