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1 Introduction

This research project addresses an open problem in the Langlands Program relating to the
classification of representations of certain p-adic groups. The Langlands Program consists
of a vast number of wide-reaching conjectures worked on by mathematicians across the
world. Its importance to the field of mathematics as a whole cannot be overstated, as it
deals with the description of the “fundamental particles of arithmetic,” L-Functions, and
the tools used in its study connect fields ranging from number theory and representation
theory to algebraic geometry and harmonic analysis. The work in this project is one of
the many crucial problems in the program, and the methods used will be repurposed to
simplify the approaches to the construction of examples for far more complex problems
which are currently left unanswered.

Explicitly, the work in this project seeks to provide a first step at computational al-
gorithms for use in the classification of representations of classical p-adic groups. This
process begins with the historical characterization of p-adic representations into blocks
parameterized by mathematical objects known as Langlands parameters. Tools from alge-
braic geometry are then brought into the picture through the translation provided by the
p-adic Khazdhan Lusztig Hypothesis (pKLH). The pKLH relates the structure of special
representations known as standard representations to the structure of moduli spaces of
Langlands parameters, Vogan varieties. In particular, the relation is made through the
analysis of certain objects defined on these Vogan varieties known as simple perverse
sheaves. The full description of these objects is beyond the scope of this paper, but
nonetheless, the structure of simple perverse sheaves on Vogan varieties is susceptible to
the inductive algorithms we have constructed in this project, and hence are of primary
focus.

1.1 The Initial Problem

The initial goal of the p-atlas was to begin the computational classification of represen-
tations of certain p-adic groups, in analogy with the Atlas developed in the real case.
The initial restriction for this problem was the classification of certain representations
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of the group GLn(F ), where F is a p-adic field of residue cardinality qF ∈ N. In order
to make this incredibly difficult task more tractable we leveraged the p-adic Khazdhan
Luzstig Hypothesis in order to re-frame the problem geometrically. This involved the use
of Vogan varieties, as characterized in the work of Cunningham, Fiori, Moussaoui, Mracek,
and Xu [CFM+22]. Vogan varieties, being moduli spaces of Langlands parameters, are
parameterized by objects known as infinitesimal parameters which classify Langlands
parameters with the same Vogan variety.

Definition 1.1 (Infinitesimal Parameter: Informal). An infinitesimal parameter of
GLn(F ) is a diagonal matrix λ ∈ GLn(C) of the form

λ = diag(qe0F , ..., qenF )

where e0 ≥ e1 ≥ · · · ≥ en ∈ 1
2Z.

There is a much more general definition of infinitesimal parameters [CFM+22, p. 21],
but this simplification is sufficient for the cases we consider, which are only unramified
parameters of split classical groups. A Vogan variety associated with a given infinitesimal
parameter is then characterized as follows.

Definition 1.2 (Vogan Variety: Informal). The Vogan variety associated with an in-
finitesimal parameter λ = diag(qe0F , ..., qenF ) in GLn+1(C) is a matrix space defined by

Vλ :=
{
M ∈ LieGLn+1(C) : λMλ−1 = qFM

}
Attached to Vλ is a group

Hλ := {g ∈ GLn+1(C) : λgλ−1 = g}

which acts by g ·M := gMg−1.

In order to use the pKLH we must study the structure of simple perverse sheaves known
as intersection cohomology complexes (ICs) on these Vogan varieties. Although
the construction of ICs is beyond the scope of this paper, we may intuit them as being
generated by local systems defined on the orbit closures of a given Vogan variety.

Definition 1.3 (Local System: Informal). A local system LC on an orbit closure C
in a Vogan variety Vλ is an assignment of vector spaces to open sets in C, such that the
assignment is locally constant.

Within this framework, an IC built on an orbit C with local system LC is denoted
IC(C,LC), and our original problem is restructured as the determination of the restric-
tions IC(C,LC)|C′ of the ICs to each orbit C ′ in the Vogan variety Vλ. This reframed
problem is inductive in nature, and is now receptive to algorithmic and computational
approaches.

1.2 New Directions

While constructing an algorithm for determining the structure of ICs on a Vogan variety,
we quickly hit the wall of orbit closures with singularities in our Vogan varieties. In
the case of orbits with smooth closures we had well known results which allowed us to
determine the restrictions of ICs on trivial local systems, IC(C,1C) [Ach21]; a trivial local
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system can be thought of as one which assigns the one-dimensional vector space C to each
open set in the orbit closure C. However, in the case of non-singular orbit closures other
techniques were required. In particular, for any orbit C ⊆ Vλ with non-smooth closure C,
we required a smooth space C̃ along with a suitably well-behaved covering map π : C̃ → C
so that we could extract the structure of IC(C,1C) from the structure of IC(C̃,1

C̃
) which

is susceptible to our known techniques since it is defined on a smooth space. This process
is known as finding a resolution of singularities for our orbit closures. In order to
reconcile this difficulty we underwent a thorough literature search in order to find such
resolutions. In this process we were able to construct suitable resolutions in full generality
for the case of GLn(C) using previous work on Quiver varieties by Abaesis, Del Fra, and
Kraft [ADFK81], as well as the classification of Vogan varieties in terms of Quiver varieties
suggested by Zelevinsky’s work [Zel81], and made more explicit by Cunningham and Ray
[CR22].

Following this literature search and the creation of the algorithm we hit one more
road block, which was the fact that our algorithm required a deep understanding of the
fibers of the resolutions we constructed. The classification of these fibers proved to be
in general beyond the scope of this project, although success was found for a number of
infinite families of examples. Due to this roadblock we transitioned into exploring a new
direction, which was the start of an algorithm for two other classical groups, namely the
special orthogonal group of odd degree, SO2n+1(C), and the symplectic group Sp2n(C).
This investigation provided an opportunity to learn about these two groups along with
their lie algebra structures, both of which have a number of applications in mathematics
and physics. We continued investigating these two groups until the conclusion of the
project.

2 Progress

Upon completion of this project we were able to fully classify the IC structure of a number
of infinite families of Vogan varieties in the case of GLn(C). Specifically, we were able to
construct algorithmic results for infinitesimal parameters of the following forms:

I1. λ = diag
(
q
(n−1)/2
F , q

(n−3)/2
F , ..., q

−(n−1)/2
F

)
, Vλ

∼= Cn

I2. λ = diag

q
1/2
F , ..., q

1/2
F︸ ︷︷ ︸

ℓ

, q
−1/2
F , ..., q

−1/2
F︸ ︷︷ ︸

k

, Vλ
∼= Mℓ,k(C)

I3. λ = diag

q1F , ..., q
1
F︸ ︷︷ ︸

ℓ

, q0F , ..., q
0
F︸ ︷︷ ︸

k

, q−1
F

, Vλ
∼= Mℓ,k(C)×Mk,1(C)

We also classified Vogan varieties which can be decomposed into products of these three
forms. Examples of the produced IC tables for the (I1), (I2), and (I3) cases are given in
Tables 1, 2, and 3.
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Tab. 1: IC restriction (stalk) table for GL3(C) with infinitesimal parameter for case (I1).

mλ
geo |C0,0,0 |C1,0,0 |C0,1,0 |C1,1,1

IC(C0,0,0,1C0,0,0) C[0] 0 0 0
IC(C1,0,0,1C1,0,0) C[1] C[1] 0 0
IC(C0,1,0,1C0,1,0) C[1] 0 C[1] 0
IC(C1,1,1,1C1,1,1) C[2] C[2] C[2] C[2]

Tab. 2: IC restriction (stalk) table for GL6(C) with infinitesimal parameter for case (I2)
with ℓ = k = 3.

mλ
geo |C0 |C1 |C2 |C3

IC(C0,1C0) C[0] 0 0 0
IC(C1,1C1) C[5]⊕ C[3]⊕ C[1] C[5] 0 0
IC(C2,1C2) C[8]⊕ C[6]⊕ C[4] C[8]⊕ C[6] C[8] 0
IC(C3,1C3) C[9] C[9] C[9] C[9]

Tab. 3: IC restriction (stalk) table for GL5(C) with infinitesimal parameter for case (I3)
with ℓ = k = 2.

mλ
geo |C000 |C100 |C010 |C110 |C111 |C020 |C121

IC(C000,1C000) C[0] 0 0 0 0 0 0
IC(C100,1C100) C[2] C[2] 0 0 0 0 0
IC(C010,1C010) C[3]⊕ C[1] 0 C[3] 0 0 0 0
IC(C110,1C110) C[4]⊕ C[2] C[4] C[4] C[4] 0 0 0
IC(C111,1C111) C[5]⊕ C[3] C[5]⊕ C[3] C[5] C[5] C[5] 0 0
IC(C020,1C020) C[4] 0 C[4] 0 0 C[4] 0
IC(C121,1C121) C[6] C[6] C[6] C[6] C[6] C[6] C[6]

Regarding our work in SO2n+1(C) we were also able to determine the orbit and IC
structure of case (I1), and demonstrated that it embeds equivariantly, i.e. preserving the
group action, into a Vogan variety for GLn(C), also of case (I1). On the other hand, for
Sp2n(C) we constructed the Vogan variety for case (I2) using symbolic tools in Sage, and
found its orbit structure. However, the orbit closures in case (I2) were highly singular and
hence required resolutions. Additionally, the (I2) case for Sp2n(C) came with non-trivial
ICs on all but the trivial orbit, which required multiple resolutions in order to parse out
their structure. Thus, although we were able to construct a general resolution for this
case, the study of the IC structure was too complicated to conclude before the end of this
project.

2.1 Computational Work

In order to study the geometric structure of Vogan varieties, the first computational
tools we constructed were related to symbolically generating the form of elements in
a given Vogan variety. These tools were especially useful when studying the struc-
ture of the Vogan varieties for SO2n+1(C) and Sp2n(C), as they were not as well stud-
ied as the Vogans for GLn(C). For example, in the case of an infinitesimal parameter
λ = diag

(
q2F , q

1
F , q

0
F , q

−1
F , q−2

F

)
for SO5(C), the code produced a general element of the
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Vogan, M , and a general element of the group acting on the Vogan, g, of the forms

M =


0 a12 0 0 0
0 0 a23 0 0
0 0 0 −a23 0
0 0 0 0 −a12
0 0 0 0 0

 , and g =


g11 0 0 0 0
0 g22 0 0 0
0 0 1 0 0

0 0 0 g−1
22 0

0 0 0 0 g−1
11


The next important tool we created was one which generates the orbit lattice for a given
Vogan variety. The lattice structure of orbits in a Vogan variety is induced by the natural
partial ordering on orbits C,C ′ ⊆ Vλ, where C ′ ≤ C if and only if C ′ ⊆ C.

Example 2.1. Consider the infinitesimal parameter λ = diag
(
q1F , q

1
F , q

0
F , q

0
F , q

−1
F , q−1

F

)
for

GL6(C). Then using the code created we can generate the orbit lattice

C(2, 2, 2)

C(1, 2, 1) C(2, 1, 1)

C(1, 1, 1)

C(0, 2, 0) C(1, 1, 0) C(2, 0, 0)

C(0, 1, 0) C(1, 0, 0)

C(0, 0, 0)

where C(i, j, k) corresponds to an element

M =

0 X10 0
0 0 X21

0 0 0

 ∈ M6,6(C), X10, X21 ∈ M2,2(C)

where rk(X21) = i, rk(X10) = j, and rk(X10X21) = k.

The main computational work that was done for this project was the creation of an
inductive algorithm in Sage which computes the structure of the ICs attached to a Vogan
variety for GLn(C). We describe the overall approach of the algorithm in the following
subsection.

2.1.1 Inductive Sage IC Algorithm

The algorithm begins by inputting an infinitesimal parameter of the form (I1), (I2), or (I3)
(or a product thereof). Using a breadth-first search as well as a combinatorial tool known
as a multisegment, all orbits in the Vogan variety with the given infinitesimal parameter
are determined. In order to store the resulting IC restriction information of each orbit, a
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nested dictionary is created with the restrictions stored as polynomials. The powers of the
polynomials indicate the shifts of the vector spaces in the restriction, and the coefficient
in front of each term indicates the dimension of the vector space.

Once this initial setup is done the calculation of ICs is proceeded inductively from the
smallest orbits to the largest orbits. Since there is not in general a total ordering on orbits,
but only a partial ordering, the inductive process is done in terms of “levels” of the poset.
Using well known theoretical results for ICs with smooth support the structures of ICs
on orbits with non-singular closures are computed and stored. The computation for ICs
supported on orbits with singular closures is more nuanced and requires a second inductive
step.

In order to compute the IC for an orbit with a singular closure we rely on the De-
composition Theorem 2.5. Using this result requires the determination of multiplicities in
Equation 2.1. This process is done using a descent from the orbit in question down the
poset tree layer by layer. As we have performed already an initial induction up the poset
tree with respect to determining IC restrictions, all orbits less than the singular orbit
in question have their ICs fully determined. This allows for their use when determining
multiplicities based off of restrictions to orbits. Note that in order to compute these re-
strictions we require the cohomologies of fibers above points, as described in Equation 2.2
in the Theoretical Work section. Once this process is completed all of the ICs and their
restrictions are collected into a table which is formatted using LATEX code. Examples to
this effect are illustrated in Tables 1, 2, and 3.

2.2 Theoretical Work

Throughout this section fix an infinitesimal parameter λ of GLn(C). The primary theo-
retical work needed for this project was related to the Sage IC Algorithm. To this end
we first required a method of resolving singularities of orbit closures. Such a resolution of
singularities for a space is defined, informally, as follows.

Definition 2.1 (Resolution of Singularities: Informal). Let S be a singular variety. A
resolution of singularities of S is a smooth variety S̃ together with a proper and
birational map π : S̃ → S.

Intuitively the proper condition ensures that π behaves like a covering or projection
onto S, while the birational condition restricts the size of S̃, forcing S̃ and S to have
the same dimension. In general such resolutions are incredibly difficult to construct.
However, using tools from the theory of Quiver varieties [ADFK81, pp. 410-411], we
found a method of resolving orbit closures using special projective varieties known as
partial flag varieties.

Definition 2.2 (Partial Flag Variety). Let V be a vector space of dimension n and let
0 < e1 < · · · < ek < n be a monotonic sequence of integers between 0 and n. Then the
partial flag variety with index (e1, ..., ek) is defined to be

F (e1, ..., ek;n) =
{
(V1, ..., Vk) ∈ P(V )k : V1 ⊆ · · · ⊆ Vk, dimVi = ei, 1 ≤ i ≤ k

}
Elements of F (e1, ..., ek;n) are referred to as flags.

Then to resolve an orbit closure C for an orbit C ⊆ Vλ we can extend points in C by
solutions to projective equations. Before describing this result explicitly we require some
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notation and preliminary results. First, the work of Cunningham and Ray [CR22, p. 6,
Lem 2.1] allows us to exhibit the identification

Vλ
∼=

m∏
i=1

HomC(Ei, Ei−1)

where E0, ..., Em are the distinct neighboring eigenspaces of λ. Then an element in Vλ

may be written in the form (X1,0, X2,1, ..., Xm,m−1). With this convention we define the
following notation.

Definition 2.3 (Rank Triangle). Let X := (X1,0, X2,1, ..., Xm,m−1) ∈ Vλ. We define the
rank triangle for X to be the array (ri,j)0≤j≤i≤m where ri,i := dimEi, and for i > j,

ri,j := rk(Xj+1,jXj+2,j+1 · · ·Xi,i−1)

An essential result used in the classification Vogan varieties for our algorithm is that
an orbit C ⊆ Vλ is fully determined by the rank triangle of one of its elements [Rid22,
p. 21, Prop 2.3.7]. If (ri,j)0≤j≤i≤m is the rank triangle for an orbit C ⊆ Vλ, we notate
Fi,C = F (rn,i, ..., ri−1,i; ri,i), which is a variety of flags in Ei.

Theorem 2.4 (Orbit Closure Resolution). If C ⊆ Vλ is an orbit with rank triangle
(ri,j)0≤j≤i≤m, then the space

C̃ :=

{
(X,F0, ..., Fm) ∈ C ×

m∏
i=0

Fi,C : Xi,i−1

(
F

(rj,i)
i

)
⊆ F

(rj,i−1)
i−1 , 1 ≤ i ≤ j ≤ n

}

is smooth, and the projection π : C̃ → C onto the first component is proper and birational,

so (C̃, π) is a resolution of singularities. F
(rj,i)
i is the subspace of dimension rj,i in the

flag Fi.

A simple but important first example of this resolution in action is given below.

Example 2.2 (Determinantal GL4(C)). Consider the infinitesimal parameter given by

λ = diag
(
q
1/2
F , q

1/2
F , q

−1/2
F , q

−1/2
F

)
. For this parameter Vλ

∼= M2,2(C), and the orbits in the

Vogan are precisely determined by rank. The orbit C1 of rank 1 matrices has closure

C1
∼= {X ∈ M2,2(C) : detX = 0} =

{(
a b
c d

)
∈ M2,2(C) : ad− bc = 0

}
which is singular at a = b = c = d = 0. In this case the rank triangle is given by
r0,0 = 2, r1,1 = 2, and r1,0 = 1, so F0,C1 = {(0, U,E0) : dimU = 1}, and F1,C1 =
{(0, E1)} ∼= {pt}. Truncating the notation we can write

C̃1 =
{
(X,U) ∈ C1 × F0,C1 : X1,0(E1) ⊆ U

}
This is a well-known resolution of what are known as determinantal varieties [Wey03,
pp. 160-161].

The second primary theoretical tool required for the Sage IC algorithm was a deep
understanding of the Decomposition Theorem [dCM07, p. 13].
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Theorem 2.5 (Decomposition Theorem, Informal). Let π : C̃ → C be a resolution of
singularities of C ⊆ Vλ. Then

π!IC(C̃,1
C̃
) ∼=

r(p)⊕
i=−r(p)

pHi
(Rπ!IC(C̃,1

C̃
))[−i]

where r(p) = maxC′≤C{dimC ′ + 2dimπ−1({X})X∈C′ − dimC} is the defect of semi-

smallness. As each pHi(Rπ!IC(C̃,1
C̃
)) ∼=

⊕
C′≤C mi,C′IC(C ′,1C′), this can be rewritten

as

π!IC(C̃,1
C̃
) ∼=

r(p)⊕
i=−r(p)

⊕
C′≤C

mi,C′IC(C ′,1C′)[−i] (2.1)

Although this theorem is extremely complex and dense, the final form that we were able
to express it in was vital to the Sage IC algorithm, as it allowed us to gain information
on ICs supported on singular orbit closures from information about an IC on a smooth
space along with the ICs of smaller orbits. In particular, since we’re dealing with a proper
map out of a smooth space we have the description of stalks at points X ∈ C ′ ≤ C given
by

(π!IC(C̃,1
C̃
)X ∼= H•(π−1({X}))[dimC] (2.2)

where we can think of a stalk at a point X ∈ C ′ as a type of restriction down to C ′. Thus,
our problem reduces to the study of cohomologies of fibres above points in our Vogan
variety for our resolution of singularities π. Although this was found to be in general a
difficult task, in cases (I1), (I2), and (I3) the cohomologies are reasonable since the fibres
may be described in terms of products of projective spaces.

Finally, one last essential result which I proved with respect to the decomposition the-
orem applied to the resolutions in Theorem 2.4 is the following.

Theorem 2.6. Let Vλ be a Vogan variety with eigenspace Em, Em−1, ..., E0, and let C be
an orbit with singular closure. If π : C̃ → C is the resolution of singularities given in
Theorem 2.4, then IC(C,1C) appears with multiplicity 1 and zero shift in π!IC(C̃,1

C̃
).

Theorem 2.6 is what allows us to use the decomposition theorem in finding the restric-
tions of IC(C,1C) when C is singular.

We now briefly return to our example of the determinantal variety for GL4(C) to illus-
trate these results.

Example 2.3 (Determinantal GL4(C): Decomposition Theorem). For the resolution π :

C̃1 → C1, we have shown
π!IC(C̃1,1C̃1

) ∼= IC(C1,1C1)

Then since π−1({X}) ∼= {pt} for X ∈ C1 we have

IC(C1,1C1)|C1
∼= C[3]

where 3 = dimC1. This aligns with previous theoretical results [Ach21, p. 543]. The
interesting result occurs for restriction to C0 = {0}, the zero orbit, as π−1({0}) ∼= P1, the
projective line, which has cohomology H•(P1) ∼= C[0]⊕ C[−2]. Then

IC(C1,1C1)|C0 = C[3]⊕ C[1]
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This fully describes the structure of IC(C1,1C1).

3 Future Directions

With the tools developed in this project we are able to classify the ICs of a number of
Vogan varieties for GLn(C). However, there are still an assortment of important cases
yet to be fully resolved. Additionally, in consideration of the groups SO2n+1 and Sp2n, as
well as other classical matrix groups, a general algorithm for determining the structure of
non-trivial ICs is still an open problem. Thus, there is still much work that can be done
with respect to determining coverings of orbits, as well as how to dissect the information
these coverings give in order to distinguish ICs attached to different local systems.

Another possible pathway for future work can be found in re-purposing the tools de-
veloped in this project so that they can be used to study other objects in the Langlands
program. Importantly, the primary object of interest which may be elucidated by these
algorithms is the Evs functor, which is currently being used to describe interesting packets
of representations for p-adic groups such as GLn.

Acknowledgements. I would like to acknowledge the help of Clifton Cunningham and
Kristaps Balodis throughout the entirety of this project. I would also like to acknowledge
Andrew Fiori, who assisted in my understanding of the decomposition theorem for use in
the IC algorithm. Finally, I would like to extend my gratitude to members of the Voganish
Project as a whole for their support during this project, as well as PIMS and the VXML
organizing team for setting up this opportunity.

References

[Ach21] P.N. Achar, Perverse sheaves and applications to representation theory, Math-
ematical Surveys and Monographs, American Mathematical Society, 2021.

[ADFK81] S. Abeasis, A. Del Fra, and H. Kraft, The geometry of representations of am,
Mathematische Annalen 256 (1981), no. 3, 401–418.

[Ben22] Joel Benesh, Equivariant resolutions of singularities for orbits in generalized
quiver varieties arising in the local langlands program for p-adic groups, Mas-
ter’s thesis, University of Lethbridge, 2022, p. 104.

[CFM+22] Clifton Cunningham, Andrew Fiori, Ahmed Moussaoui, James Mracek, and
Bin Xu, Arthur packets for p-adic groups by way of microlocal vanishing cycles
of perverse sheaves, with examples, Memoirs of the American Mathematical
Society 276 (2022), no. 1353.

[CM93] D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple lie
algebra: An introduction, Mathematics series, Taylor & Francis, 1993.

[CR22] Clifton Cunningham and Mishty Ray, Proof of vogan’s conjecture on arthur
packets: simple parameters of p-adic general linear groups, 2022.

[dCM07] Mark Andrea de Cataldo and Luca Migliorini, The decomposition theorem and
the topology of algebraic maps, 2007.

[Rid22] Connor David Riddlesden, Combinatorial approach to abv-packets for gln, Mas-
ter’s thesis, University of Lethbridge, 2022, p. 127.

9



REFERENCES

[Wey03] Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge tracts
in mathematics ; 149, Cambridge University Press, Cambridge, 2003 (eng).

[Zel81] A. V. Zelevinskii, p-adic analog of the kazhdan -lusztig hypothesis, Functional
Analysis and Its Applications 15 (1981), 83–92.

10


	Introduction
	The Initial Problem
	New Directions

	Progress
	Computational Work
	Inductive Sage IC Algorithm

	Theoretical Work

	Future Directions

