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1. Introduction

Prior to Google search engines often found and ranked websites based on the

incidence of keywords which could bury important results below less relevant ones,

leaving the user to look through pages of results. Google’s PageRank algorithm

instead relies of the structure of the internet, hypothesizing that an important page

will have many links to it while an unimportant page will receive far fewer links from

other websites, assuming the number of links reflects the degree of human interest.

The goal of this algorithm was to improve the quality of the search results. Their

work seeks to represent the structure of the internet mathematically, and create

a mathematical measure of website significance, separate from user behaviour or

website content. Mathematical representation opens the problem to computational

analysis, allowing us to expand our explorations. A number of mathematical tools

are used in the problem; the PageRank algorithm seeks to represent the relationship

between pages in a graph, with pages represented by nodes and links represented by

edges; it then constructs a transfer matrix that describes the likelihood of randomly

navigating from one page to another; and the eigenspace of this matrix encodes

information about the structure of the graph.
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2. Problem

We were interested in what we can discover about the structure of the internet

based on its transfer matrix. We also wanted to know whether we could understand

typical user behaviour by examining a Markov Chain which describes random walks

via the transfer matrix. We were also interested in comparing the computational

advantages of each approach.

3. Mathematical Tools

3.1. Background and Initial Work. We began by seeking to learn about and

better understand the mathematical tools being used in the problem. We did

a literature review to understand PageRank and why it is significant as well as

understanding generalized eigenvectors, Jordan chains, and Jordan normal form.

Of the articles we reviewed, the most impactful to our work were [1, 2, 3].

3.1.1. Graphs and Markov Matrices. The adjacency matrix of a graph can be used

to compute its Markov matrix. Given a finite, directed graph G = (V,E), with a set

of nodes V = {v1, ..., vn}, and a set of edges E = {E1, . . . , En} the adjacency matrix

elements Aij are 1 when an edge exists from vi directed to vj and 0 otherwise.

Evidently, the diagonal of the adjacency matrix represents the self-loops in the

graph, thus the network representing the internet should have a zero-diagonal, as

that would model a user refreshing the page, which is unlikely to meaningfully

reflect the structure of the internet.

Suppose G is given by Figure 1.
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Figure 1. A sample directed graph with 8 nodes

Then the adjacency matrix of the graph is

A =



0 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0


The Markov matrix can be computed by dividing each of the adjacency matrix

elements by the sum of their row. However, nodes with no outgoing lines (dangling

nodes) result in a row of zeroes, which proves to be problematic when computing

the Markov matrix P. To rectify this, the zero-rows are replaced with rows of 1/n

for an n× n matrix.
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Then the Markov matrix of the example above is given by

P =



0 1 0 0 0 0 0 0

0 0 1/2 0 0 1/2 0 0

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

1/3 1/3 0 0 1/3 0 0 0

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

0 0 1 0 0 0 0 0

0 1/4 0 0 1/4 1/4 0 1/4

0 0 0 0 0 1 0 0


3.1.2. Random Surfer Model. One problem that arises is in an internet with isolated

loops. A loop consisting of a few web pages (such as a website with no incoming

or outgoing external links) results in a rank sink since the rank accumulates within

the loop. A random walk initializing within the loop would remain in the loop

indefinitely. To solve this, a random surfer model is implemented wherein each

iteration there is a probability α that the user accesses a hyperlink and probability

1 − α that the user navigates to another site, such as by searching or typing in a

URL. This can be computed with Equation 1 where P(α) is the new random surfer

Markov matrix, P is the original Markov matrix, n is the number of web pages and

eeT is an n× n matrix of ones.

P(α) = αP+
(1− α)

n
eeT(1)

Probability 1 − α is typically taken as a small value such as 0.15, normally for

the sake of computational advantage, as we will explain later.

3.1.3. Dominant Eigenvalue and Stationary Distribution. The dominant eigenvalue,

that is, the eigenvalue with the largest modulus, will always be real and equal to 1

for a Markov matrix.

|λ1| = 1 > |λ2| ≥ ... ≥ |λn|(2)
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The dominant eigenvalue’s corresponding eigenvector, denoted by π represents

the stationary distribution.

πT = πTP(α)(3)

When the power method is applied with P(α), such as P(α)k for a very large

integer k, the resulting matrix multiplication of an initial distribution converges to

the stationary distribution. In other words, π gives the likelihoods πi of ending

up at page i after a very long time, hence, it can be used to rank each page. And

since this represents a probability distribution of the nodes,
∑

i πi = 1. Given the

ergodicity of the random surfer model, a stationary distribution is guaranteed to

exist. If multiple eigenvalues are equal to 1 then the system may oscillate between

the dominant states, however for the random surfer model, P(α) is aperiodic and

only one eigenvalue of 1 exists.

3.1.4. Subdominant Eigenvalues and Convergence. The second eigenvalue, that is,

the eigenvalue with the second largest modulus denoted by λ2, can be useful in

determining convergence rates. For the random surfer model, λ2 is limited by α.

|λ2| ≤ α(4)

Since |λ1| = 1, the eigengap is given by |λ1| − |λ2| = 1− |λ2| ≥ 1− α. [4]

The power method may be used to explore the long term behaviour of the Markov

matrix. The rate of convergence of the power method is given by

rate of convergence =

∣∣∣∣λ2

λ1

∣∣∣∣k(5)

It follows that applying the power method to the random surfer model gives

rate of convergence ≤ αk(6)

3.1.5. Necessity of Generalized Eigenvectors. We can find the basis for an n by n

square matrix, if it is diagonalizable, that is there exists an invertible matrix P
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such that P−1AP = D, where D is a diagonal matrix (a matrix where the only

non-zero entries occur on the diagonal). To “diagonalize” a matrix means to find

D, in order to do this we must first find P . However, P can be constructed by

finding the eigenvectors of the matrix A, and then combining the eigenvectors as

column vectors into a matrix. When we do this we find that D is the diagonal

matrix with the diagonal values being eigenvalues corresponding to the position of

the eigenvectors in P. The eigenvectors form a basis for the vector space of the

column vectors of P.

In some cases, the unit vectors along the x, y, and z axis are not ideal to

describe a particular scenario, for example if we are standing on a floor covered

with parallelogram-shaped tiles, rather than square ones. In this scenario we may

wish to use the edges of the tiles as our vectors. If we had a previous set of vectors

giving us directions in the room we could apply a linear transformation to them

in order to convert them to our new basis, we would have one vector that has

undergone a transformation, and one that has not. The vector that maintains its

direction through the linear transformation is called an eigenvector. Eigenvectors

are important because they do not change direction when acted upon by a matrix,

but remain in the same direction. For example, for a matrix A and an eigenvector

X we can write AX = λX, where multiplying the matrix and eigenvector together

produces a vector that is a scalar multiple of the eigenvector (the scalar being called

an eigenvalue).

3.1.6. Calculating generalized eigenvectors of transfer matrices. It is important to

note that in order to diagonalize a matrix we require n linearly independent eigen-

vectors, otherwise they will not span the space. A square matrix that has duplicate

eigenvalues is called degenerate, and these matrices cannot be diagonalized, but we

can use generalised eigenvectors to form the Jordan Normal Form of a matrix as

an analogue to diagonalization. This process gives us a matrix which is as close as

possible to being diagonalizable, with zeros at all spots except the diagonal (entries
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are eigenvalues) and some positions of the superdiagonal of the matrix (entries are

ones).

In order to calculate generalised eigenvectors one first calculates the eigenvectors

and identifies those with their algebraic multiplicity greater than their geometric

multiplicity. We take these eigenvectors and create Jordan chains for them, In

order to get a set of n linearly independent vectors. These subsequent vectors

in the Jordan chains are called generalised eigenvectors and, together with the

eigenvectors, can be used to find the Jordan Normal Form of the matrix. In order

to find the generalized eigenvectors of a matrix A we need to find vectors where

(7a) (A− λI)mxm = 0

(7b) (A− λI)m−1xm ̸= 0

4. Experimental Work

4.1. Experimental Tools. The graph illustrated in Figure 1 was used through-

out experimentation using various methods including the power method algorithm,

Markov matrix sampling, and Markov chain Monte Carlo.

4.2. Power Method. In practice, PageRank is computed using an algorithm known

as the Power Method, which is a general method for approximating the dominant

eigenvector of a matrix. In the vein of studying linear algebraic models via simula-

tion, we chose to implement the power method, computationally test the theoretical

convergence properties, and compare the performance of the power method to that

of our implementation for Markov chains.

Here we will describe the basic principles of power method, and the expected con-

vergence. Subsequently, we will describe the computational test of the convergence

properties.

The power method can be simply stated as an iterative process (Ref[3], p.38),

(8) πk+1 = πkP ,
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where π is stationary vector which approximates the dominant eigenvector, πk is

the approximation resulting from the kth iteration of the above procedure, and P

is the transition matrix corresponding to the graph being considered.

It should be noted here that for any matrix which satisfies the convergence

requirements of the method, which the random surfer matrix does, for any initial

vector π0, πk will converge the to dominant eigenvector as k → ∞.

As for the convergence of the method, it is known (Ref [3], p.41) that the as-

ymptotic rate of convergence should be

(9) R =

∣∣∣∣λ2

λ1

∣∣∣∣k = |λ2|k ,

where k is the number of iterations, λ1 and λ2 are the largest and second-largest

eigenvalues, respectively, and λ1 = 1 for the matrices were are interested in, allowing

us to eliminate it from the above expression.

4.2.1. Power Method Convergence. In order to test the theoretical predictions for

the rate of convergence of the power method, we applied the method to our test

graph and computed the error in the approximation as a function of the number of

iterations.

Here we define the error to be

(10) εk = ||πk − v|| =
√∑

j

[(πk)j − vj ]
2
,

where πk is the approximate stationary distribution after k iterations; v is the

dominant eigenvector of the transition matrix P, computed via conventional eigen-

vector decomposition; and the index j refers to the jth component of each vector.

The measure used to define the error is simply the Euclidean norm of the difference

between the two vectors; it should be noted that this decision was made for the sake

of convenience, without theoretical justification, and that other measures could be

used instead.

8



To compute the rate of convergence of ε, we assume the error takes the form

(11) εk = a2 · (a1)k ,

where a1 and a2 are arbitrary coefficients. Based on the theory, we would ex-

pect that a1 = λ2. To facilitate the determination of the coefficients, we use the

expression

(12) log εk = k log a1 + log a2 = kb1 + b2 ,

and estimate a1 = 10b1 via a least-squares fit of log εk.

One final detail which must be mentioned is that we expect the rate of con-

vergence to vary for different π0, even if they all converge. For this reason, the

method is applied to a large number of randomly distributed π0, and the error for

each iteration is computed by averaging over all vectors.

The results of this experiment are shown below in Figure 2.
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Figure 2. Error between approximate stationary distribution and

dominant eigenvector, as defined by equation (13). Best fit accord-

ing to equation (11) shows that a1 ≈ λ2, as predicted. Each value

is obtained by averaging the error over 10000 initial vectors (π0),

generated via uniform random distribution.

4.3. Markov Matrix Sampling Simulation. Another method to estimate the

PageRank of a network is by sampling from the Markov matrix, P(α), to generate

a Markov chain, X = {X1, X2, ...XM}. An M = 5000 Markov chain simulation

was done where the first entry, X1 was set to a uniformly random x ∈ {1, 2, ..., n}.

Then, Xi was chosen using the Xi−1th row vector probability distribution of P(α).

A sample simulation is shown in Figure 3.
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Figure 3. The first 100 iterations of a 5000 length Markov chain,
sampled from the random surfer model transition matrix of the
graph in 1.

An estimation of π could be computed by taking the normalized count of the

nodes, as demonstrated in Figure 4. Clearly, as the Markov chain length increases,

the normalized count approaches the dominant eigenvector

πT = (0.08, 0.15, 0.29, 0.06, 0.09, 0.20, 0.06, 0.07).

At 5000 iterations, the normalized count is

π̂T = (0.08, 0.15, 0.30, 0.06, 0.09, 0.20, 0.06, 0.07),

yielding an error of

error ≈ (0, 0, 0.03, 0, 0, 0, 0, 0).

The transitions between each node were also accounted for as demonstrated in

the matrix plots in Figure 6. At 5000 iterations the matrix plot in Figure 6 (f)

closely resembles the matrix plot of P(α) in Figure 5.
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Figure 4. Result node distribution from Markov matrix sampling
with varying simulation times: (a) 10, (b) 50, (c) 100, (d) 500, (e)
1000, (f) 5000 iterations.
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Figure 5. The transition matrix of random surfer model applied
to the graph from Figure 1, with α = 0.85.
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Figure 6. Simulated transition matrices from Markov matrix
sampling with varying simulation times: (a) 10, (b) 50, (c) 100,
(d) 500, (e) 1000, (f) 5000 iterations.
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4.4. Markov Chain Distributions. Now we explore the distributions of the node

counts presented in the previous section, when many of these Markov chains are

generated. To illustrate, Figure 7 shows the first 100 iterations of several Markov

chains that were used to compute distributions.
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Figure 7. Markov chains generated with the methods described
in previous sections. For clarity, only 5 of 2000 Markov chains are
plotted.

The counts for these Markov chains are shown in Figure 8, where a Gaussian

function is fitted using the means and standard deviations. The mean squared

error (MSE) of the stationary distribution may be a useful indicator of the spread

in the simulation, and eventually was used to measure convergence. We calculate

the MSE using

(13) MSE =
1

n

n∑
i=1

(πi − π̂i)
2

where n is the number of nodes, πi is the ith element of the stationary distribution

and π̂i is the ith normalized count from the simulation.
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Figure 8. Sample distributions of each node’s πi estimation with
2000 samples of Markov chains of length 500. A Gaussian function
is fitted using the standard deviation σ and mean µ.
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When the simulation is run with many samples of Markov chains, we obtain

a similar Gaussian distribution of the MSEs, as illustrated in Figure 9. Here a

Gaussian if fitted using the distribution’s mean, µ, and standard deviation, σ.
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Figure 9. The MSE distribution of the previous simulation.

When the length of the simulation is changed, the MSE’s mean and standard

deviation follows a downward trend, as shown in Figure 10 and Figure 11. Here

the standard deviation of MSE is fitted with

(14) σ = btk,

and the average MSE is fitted with

(15) µ = adt + c,

where a, b, c, d, k are fitting parameters and t is the number of iterations in the

simulation (i.e. Markov chain length).
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Figure 10. The MSE standard deviation versus various simula-
tion times.
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Figure 11. The average MSE versus various simulation times.

4.4.1. Relationship Between MSE Convergence Rates and the Second Eigenvalue.

Naturally, we ask: does the MSE distribution’s change over simulation time have

a relationship with the second eigenvalue, analogous to the relationship between

power method’s rate of convergence and the second eigenvalue? This simulation
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was run with multiple graphs using multiple simulation lengths to compare the

fitting parameters a, b, c, d, k to the second eigenvalue of P(α). The matrix, P(α),

was chosen by randomly shuffling the rows of the test random surfer model matrix

we have used up to now. In other words, the outgoing edges are swapped between

nodes. The simulation time was approximately 12 hours for 100 networks with

varying simulation times each having 1000 samples of Markov chains.
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Figure 12. b versus the eigengap. Pearson R = -0.593.
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Figure 13. k versus the eigengap. Pearson R = 0.036.

18



0.2 0.3 0.4 0.5 0.6
Eigengap 1− λ2

0.00

0.01

0.02

0.03

0.04

0.05

a

Figure 14. a versus the eigengap. Pearson R = -0.166.
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Figure 15. c versus the eigengap. Pearson R = 0.242.
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Figure 16. d versus the eigengap. Pearson R = 0.013.

Regarding the results of these experiments, we may make several interesting ob-

servations. First, we note that the eigengaps for all 100 networks and their Markov

matrices obeyed Equation 4, since 1−α = 0.15 and 1−λ2 ≥ 0.15. Second we note

that there is no obvious correlation between the eigengap and the convergence rate

of the simulation, as the above figures show either a relatively random distribution

of parameters with respect to the eigengap, or that the parameter is invariant with

respect to the eigengap.

Next, we note that the parameter d from equation (15), used to fit the Markov

chain MSE, is analagous to the parameter a1 from equation (11), which we used

to quantify the convergence of the power method. This allows some comparison

of the convergence between the two. From our experiments, we found the rate of

convergence for the power method was close to λ2, while the rate of convergence

for the Markov simulations was roughly 0.985, regardless of eigengap, based on

an inspection of Figure 16. This shows that it takes far fewer iterations to get an

accurate approximation using the power method. We are unable to provide a precise

statement of the computational advantage, as it would require more knowledge

of the cost of generating each step of the simulation, but we can say with some
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confidence that the requirement to average many simulations to get a reasonable

approximation via simulation would ensure the relative superiority of the power

method.

5. Conclusion

To summarize, we explored the subject of subspaces preserved by a matrix,

specifically the subspace spanned by the eigenvectors of Markov matrices. In this

process, we sought to understand generalized eigenvectors, their applications to the

subject of ranking webpage significance, and how modelling the problem in terms

of linear algebra compares to modelling in terms of Markov chains.

To better understand each of these concepts, we developed programs which im-

plemented each approach, verified that the models were consistent, and attempted

to compare the efficiency of different approaches to ranking webpages.

From these studies we found that the two models were, in fact, consistent, and

that the power method appeared to have much preferable convergence properties,

explaining why it is such a popular choice in practice.

6. Future Work

It is of interest to investigate what additional information about the graph is

encoded by the eigenspace of its Markov matrix. We have seen that the dominant

eigenvector represents an expected visitation to each node via a random walk, but

are unsure what meaning the other eigenvectors has.

To explore this question, one could compute the eigenspaces for a large number

of valid Markov matrices of the same size, and examine them for any apparent

structure. Another possibility would be to look for symmetries in the transition

matrix P, for example, conditions on a matrix A such that

(16) AP = A ,

which would give insight into the family of graphs which are described by a given

eigenspace.
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