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Background and Motivation

Prior to Google, search engines often found and ranked websites based on the incidence of key‐
words, which could bury important results below less relevant ones, and leave the user to look
through pages of results.

Google’s PageRank algorithm instead relies on a mathematical model for the structure of the
internet

Hypothesis: The number of links to a page reflects the relevance of a page
Goal: Improve the quality of search results
Strategy: Represent the structure of the internet mathematically create a mathematical
measure of website significance, separate from user behaviour/website content.
Benefit: Mathematical representation opens the problem to computational analysis, allowing
the use of powerful computers.

Representation of the Internet

The structure of the internet can be represented by a directed graph and its associated matrix.
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Figure 1. Webpages are nodes, edges are links between
them

A =



0 0 0 1 0 0 0 0
1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0


The adjacency matrix of the

graph

Questions Posed

What we can discover about the structure of the internet based on its matrix
representation?
How do the linear algebraic representations compare to corresponding representations in
terms of Markov chain?

Random Surfer Model and the Stationary Distribution

P(α): the new random surfer Markov matrix, α: probability the user accesses a hyperlink, 1 −
α: probability the user navigates to another site (searching/typing URL), P: the original Markov
matrix, n: the number of web pages, eeT : an n × n matrix of ones.

P(α) = αP + (1 − α)
n

eeT (1)

Stationary distribution π is given by

πT P(α) = πT (2)

which is a left‐eigenvector using the dominant eigenvalue of the Markov matrix, λ1 = 1.

Markov Matrix Sampling

The Markov matrix was sampled to build a Markov chain. Each node was counted and normalized
to determine an estimate for the stationary distribution.
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Figure 2. A sample 500 length Markov chain sampled from the Markov matrix, and counts of the nodes.

The normalized frequency of the simulation approaches the dominant eigenvector

πT = (0.076, 0.153, 0.293, 0.059, 0.089, 0.198, 0.059, 0.072)

Distributions of Markov Chains and Mean Squared Error

What happens when we generate many of these Markov chains with similar conditions?

A distribution for each node forms (Fig. 3)
Mean Squared Error: To measure the norm
distance from the stationary distribution

MSE = 1
n

n∑
i=1

(πi − π̂i)2 (3)

where π̂i is the ith node count frequency
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Figure 3. A sample 500 length Markov chain sampled
from the Markov matrix, and counts of the nodes.
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Figure 4. A sample 500 length Markov chain sampled
from the Markov matrix, and counts of the nodes.

What happens to the mean and standard deviation of the MSE error?

Standard deviation decreases with the simulation length linearly on a log‐log plot
Average MSE decreases non‐linearly with µ = adt + c (Fig. 4) where t is the simulation time
All fitting parameters were plotted against various second eigenvalues of networks

Convergence of the Power Method

A common way of computing the dominant eigenvector, in this case the stationary distribution,
is using the Power Method, expressed as

πk+1 = πkP , (4)

where π is stationary vector which approximates the dominant eigenvector, πk is the approx‐
imation resulting from the kth iteration of the above procedure, and P is the transition matrix
corresponding to the graph being considered.

In theory, this method should converge like |λ2|k. We tested and verified this prediction, as shown
in Figure 5.

0 5 10 15 20 25 30 35 40

Iterations

−10

−8

−6

−4

−2

0

2

E
rr

or
(l

og
10

)

Convergence of the Power Method
Initial Vectors: 10000
a1 = 0.4659 λ2 = 0.4658

Error

Best Fit

Figure 5. Error between approximate stationary distribution and dominant eigenvector, in terms of the Euclidean
norm. Best fit according to the logarithm of a power law, where each value is averaged over 10000 initial vectors
(π0).

Conclusion and FutureWork

In this work we compared a linear algebra model of the internet to a Markov chain model
We found that they are consistent with each other, and that the linear algebra model gives
considerable computational advantages

Future work may include:

Studying the relationship between non‐dominant eigenvectors and important features of the
internet
Computing the eigenvectors of many Markov matrices and searching for a correlation to any
interesting features of the internet
Using symbolic computation tools to search for symmetries (operations preserving the matrix
or its eigenspace) in the Markov matrices representing the internet
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