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1. Introduction

Topology is a branch of mathematics that studies the properties of
objects that remain unchanged when the object is stretched, bent, or
twisted. In recent years, topological methods have become increasingly
popular in data analysis, as they provide a powerful tool for extracting
meaningful information from complex datasets.

One key concept in topology is homology, which measures the num-
ber of holes in an object of a given dimension. Homology provides a
way to distinguish different shapes and structures and has been used
to analyze a wide range of datasets, from images and videos to gene
expression data and networks.

Topological Data Analysis (TDA) is a field that uses algebraic
topology to analyze complex data sets. One of the main techniques in
TDA is Persistence Homology, which assigns a measure of persis-
tence to topological features in a data set. In this project, we apply
Persistence Homology to a data set of points of commuting pairs of ma-
trices in the Lie group SU(2). We used the Ripser software to compute
the persistence homology of our data set. Ripser is a C++ program
that computes persistence homology using the Vietoris-Rips filtra-
tion.

Our method uses a combination of topological and algebraic tech-
niques to construct a simplicial complex from a point cloud and then
computes the persistent homology of this complex to identify the topo-
logical features of the space.

Our results show that there is a connected component in the space
of commuting pairs of matrices in SU(2), but no higher-dimensional
features such as loops. We compare our results with previous work in
the field and identify several limitations and challenges that need to be
addressed in future research.
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2. The initial problem

The study of the topological properties of the set of commuting pairs
of SU(2) is highly relevant due to its applications in various fields such
as physics and geometry. The set of commuting pairs of SU(2) arises
in the study of the spectral theory of quantum mechanical systems
with two degrees of freedom, which has significant implications in the
field of quantum mechanics. Moreover, understanding the topological
properties of this set can provide insights into the geometric structures
of the space in which the SU(2) group acts, which has applications
in the study of geometry and topology. Therefore, investigating the
topological properties of the set of commuting pairs of SU(2) is crucial
in advancing our understanding of various complex systems in physics
and mathematics.

This project aims to investigate the topological properties of the
set of commuting pairs in SU(2) using TDA. The set of commuting
pairs arises in the study of the spectral theory of quantum mechanical
systems with two degrees of freedom and has significant implications in
the field of quantum mechanics. The study of the topological properties
of this set can also provide insights into the geometric structures of the
space in which the SU(2) group acts, which has applications in the
study of geometry and topology.

The project methodology involved the following steps: data collec-
tion, persistent homology, analysis of persistent homology, and com-
putation of persistent homology barcodes. The data set used in this
project was obtained from the set of commuting pairs in SU(2), and a
point was obtained in the four-dimensional Euclidean space R8 for each
pair of commuting elements. The persistent homology analysis used the
Rips filtration to construct a simplicial complex from the point cloud
and extract topological features. The persistence diagram and barcode
were computed to visualize and characterize these features.

3. New directions

As our research team worked on the problem of studying the topo-
logical properties of the set of commuting pairs of SU(2), we explored
several different directions in order to gain a better understanding of
the problem and to identify the most effective approaches for analyzing
the data.

At the beginning of the project, we started by researching the rel-
evant literature and discussing various techniques for analyzing point
clouds. We quickly settled on the use of TDA and decided to use per-
sistent homology to extract topological features from the data set. We
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also decided to employ the Ripser filtration as our primary method for
constructing the simplicial complex from the point cloud.

Following the selection of our methodology, our research team em-
barked on the data collection phase, during which we acquired a dataset
consisting of 1000 points from the set of commuting pairs of SU(2).
These points were then used to construct a point cloud for analysis,
which we generated using our custom algorithms - the code of which
can be found in this report. Our initial focus during the analysis stage
was to compute the persistence diagram for the dataset. By doing so,
we were able to visualize the emergence and disappearance of topolog-
ical features as the distance parameter was progressively increased.

After computing the persistence diagram, we analyzed the zeroth and
first homology groups to determine the number of connected compo-
nents and loops in the data set. We also computed persistent homology
barcodes to obtain a more detailed characterization of the topological
features present in the data set. These analyses allowed us to identify
the most significant topological features of the data set, namely a single
connected component and no topologically non-trivial loops.

As we continued our analysis, we encountered several limitations and
challenges that we had to overcome. For example, we realized that our
current approach was limited to computing features of dimensions 0 and
1, while there may exist higher dimensional features up to dimension 4
in the data. We also discovered that the computational cost associated
with creating simplices from point clouds in higher dimensions was pro-
hibitively expensive, posing a significant challenge for analyzing point
clouds with a large number of dimensions.

To address these limitations and challenges, we explored alterna-
tive techniques for analyzing point clouds, such as the use of machine
learning algorithms and other TDA methods. We also considered the
possibility of increasing the sample size to obtain more accurate results
for higher dimensional features.

Throughout our work on this project, we learned a great deal about
the topological properties of the set of commuting pairs of SU(2) and
the challenges associated with analyzing point clouds. We also gained
a deeper understanding of TDA and its applications in various fields,
particularly in physics and geometry. Overall, our research team was
able to make significant progress in studying the topological properties
of the set of commuting pairs of SU(2) and identified several avenues
for future research.
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4. Progress

Through our research, we were able to answer some of the questions
we started with and those that emerged during our work. We were able
to determine the topological properties of the set of commuting pairs of
SU(2) using TDA. Specifically, we found that the set has one connected
component and no loops, which is consistent with the results obtained
by Adem and Cohen. We were also able to determine the limitations
and challenges associated with our approach, which can help guide
future research in this area.

However, our approach was limited to computing features of dimen-
sions 0 and 1, while higher dimensional features up to dimension 4
may exist in the data. This limitation means that we may have an
incomplete understanding of the underlying topological structure. Ad-
ditionally, our method of sampling point cloud may introduce bias,
which may impact the accuracy of our results.

Throughout our research, we pursued different directions, including
exploring various TDA techniques and experimenting with different
sample sizes. We learned that the computational cost associated with
creating simplices from point clouds in higher dimensions is prohibi-
tively expensive, which poses a significant challenge for analyzing point
clouds with a large number of dimensions. We also learned that ob-
taining additional sample points could potentially address some of the
limitations associated with our approach.

Overall, our research provides valuable insights into the topologi-
cal properties of the set of commuting pairs of SU(2) and highlights
the challenges associated with using TDA to analyze high-dimensional
data.

5. Computational

5.1. Sample point to get a point cloud. The research team gener-
ated a point cloud for analysis by collecting a set of 1000 points from the
set of commuting pairs of SU(2) using their own developed algorithms.
They utilized Python code to generate random elements of SU(2) and
checked if their product commutes. The generated points were then
plotted in 3D. Here is the Python code for generating a random point
cloud in SU(2) of size N :
# Helper function to generate a random element of SU(n)
def random_su(n):
A = np.random.rand(n, n) + 1j * np.random.rand(n, n)
Q, R = np.linalg.qr(A)
D = np.diag(np.exp(1j * np.random.rand(n) * 2 * np.pi))

4



return np.dot(np.dot(Q, D), np.linalg.inv(Q))

# Generate a random point cloud in SU(n) of size N

N = 1000
n = 3
X = []
A = [random_su(n) for i in range(1000)]
B= [random_su(n) for j in range(1000)]
while len(X)<N:
for i in range(1000):
for j in range(1000):
if np.allclose(np.dot(A[i], B[j]), np.dot(B[j], A[i])):
X.append(A[i])
X.append(B[j])
A = [random_su(n) for i in range(1000)]
B = [random_su(n) for j in range(1000)]
# while len(X) < N:
# B = random_su(n)
# if np.allclose(np.dot(A, B), np.dot(B, A)):
# X.append(B)

#%% md
|a|^2 + |b|^2 = 1

|$\alpha$|^2 + |$\beta$|^2 = 1

$b\bar{\beta}$ = $\bar{b}\beta$

5.2. Barcode. To compute the barcode of a point cloud that has been
sampled from X, we need to determine the persistence homology of
the associated filtration. This filtration is characterized by a sequence
of nested simplicial complexes, where the kth complex represents the
union of all simplices that are formed by k + 1 or fewer points in the
point cloud. The persistence homology of this filtration gives us the
barcode, which encodes the lifetimes of the topological features such as
connected components, loops, voids in the point cloud as they appear
and disappear.
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To compute the barcode, we can use a TDA library such as ripser or
Gudhi in Python. Here’s an example that utilizes ripser:

# Compute the persistence homology
points = np.array([np.linalg.eig(x)[0] for x in X])
rips_complex = gudhi.RipsComplex(points=points, max_edge_length=1)
simplex_tree = rips_complex.create_simplex_tree()
diag = simplex_tree.persistence()
# Print the barcodes for each homological dimension
for dim in range(3):
print(f"Dimension {dim}:")
gudhi.plot_persistence_barcode(diag)

(a) Barcode of dimension 0 (b) Barcode of dimension 1

Figure 1. Barcode of dimension 0 and 1 of the data
sampled from the space of commuting pairs in SU(2)

The left figure’s barcode indicates that the point cloud has a single
0-dimensional feature, specifically a connected component that persists
until the maximum edge length of 10000. This feature is represented
by the topmost line on the barcode. Conversely, the right figure’s bar-
code does not contain any lines that are long enough to be considered
significant. Consequently, we can infer that there are no topologically
non-trivial loops in our point cloud.

Our findings align with the results derived by Adem and Cohen [2],
which are expressed as:

H i(Hom(Z⊕ Z, SU(2)),Z) ∼=
{

Z if i = 0
0 if i = 1
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This equation indicates that the space of commuting pairs of SU(2)
has a connected component and no loops, which corresponds to our
TDA results.

6. Theoretical

7. The set of commuting elements in SU(2)

In this section, we will study the set of commuting elements in the
group SU(2). This set consists of pairs of matrices (A,B) in SU(2) that
commute, that is, AB = BA for all B ∈ SU(2). Our goal is to describe
this set in terms of equations with real coefficients, which will allow us
to view it as the solution set of a system of (non-linear) equations.

To do this, we will start by computing the product of two matrices
in SU(2) and then use the condition that AB = BA to derive a system
of equations that must be satisfied by any pair of matrices in SU(2)
that commute. By solving this system of equations, we will obtain a
description of the set of commuting elements in SU(2) in terms of real
coefficients.

Definition 7.1. The group SU(2) is defined by

SU(2) =

{
M =

[
a −b̄
b ā

]
: a, b ∈ C, |a|2 + |b|2 = 1

}
Consider the

X = {(A,B) ∈ SU(2)× SU(2) : AB = BA}

Let A =

[
a −b̄
b ā

]
and B =

[
α −β̄
β ᾱ

]
such that (A,B) ∈ X. Then

|a|2 + |b|2 = 1, |α|2 + |β|2 = 1, and AB = BA. This means First, let’s
compute AB:

AB =

[
a −b̄
b ā

] [
α −β̄
β ᾱ

]
=

[
aα− b̄β −aβ̄ − b̄ᾱ
bα + āβ −bβ̄ + āᾱ

]
Now, let’s compute BA:

BA =

[
α −β̄
β ᾱ

] [
a −b̄
b ā

]
=

[
αa− β̄b −αb̄− β̄ā
βa+ ᾱb −βb̄+ ᾱā

]
Since AB = BA, we obtain we have:

aα− b̄β = αa− β̄b

−aβ̄ − b̄ᾱ = −αb̄− β̄ā

bα + āβ = βa+ ᾱb

−bβ̄ + āᾱ = −βb̄+ ᾱā
7



We observe that the first equation has a complex conjugate that is the
same as the fourth equation, and the second equation has a complex
conjugate that is the same as the third equation. Therefore, we can
disregard the last equation and the second equation, respectively. Thus,
we can obtain a reduced set of equations consisting of the first and third
equations.

aα− b̄β = αa− β̄b

bα + āβ = βa+ ᾱb

The first equation gives:

aα− b̄β = αa− β̄b ⇐⇒ aα− αa = β̄b− b̄β ⇐⇒ β̄b− b̄β = 0

Now add to these the conditions |a|2 + |b|2 = 1, |α|2 + |β|2 = 1. Then
write each complex number into its Cartesian form. The set X will be
described in terms of equations with real coefficients. These are the
equations we used in our codes to generate point clouds.

Theorem 7.1. The homology groups of SU(2) can be computed from
the topology of the 3-sphere S3

Proof. In fact, SU(2) is diffeomorphic to the 3-sphere S3, so their ho-
mology groups are isomorphic. To see the diffeomorphism between
SU(2) and S3, we can use the fact that any element g ∈ SU(2) can be

written as a 2×2 unitary matrix with determinant 1, i.e., g =

[
a b
−b̄ ā

]
,

where a, b ∈ C and |a|2 + |b|2 = 1. We can identify such a matrix with
a point (a, b) ∈ C2 satisfying |a|2 + |b|2 = 1. This gives a bijection be-
tween SU(2) and the unit 3-sphere S3 ⊆ C2. Moreover, this bijection
is a diffeomorphism, which means that the smooth structure on SU(2)
is the same as the smooth structure on S3.

Since S3 is a simply-connected space, its homology groups are par-
ticularly easy to compute. In fact, the homology groups of S3 are as
follows:

• H0(S
3) ∼= Z, the group of connected components of S3.

• H1(S
3) ∼= 0, the group of loops in S3 H2(S

3) ∼= 0, the group of
2-dimensional surfaces in S3.

• H3(S
3) ∼= Z, the group of 3-dimensional volumes in S3 Since

SU(2) is diffeomorphic to S3, it follows that the homology groups
of SU(2) are isomorphic to those of S3. This means that H0(SU(2)) ∼=
Z and Hk(SU(2)) ∼= 0 for k = 1, 2, while H3(SU(2)) ∼= Z.

�
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8. n-Simplex and simplicial complex

Definition 8.1. A k-dimensional simplex σk is defined as the convex
hull of (k + 1) affinely independent points v0, v1, . . . , vk ∈ Rn. In other
words, a k-simplex is the smallest convex set in Rn that contains the
points v0, v1, . . . , vk and that is not contained in any affine subspace of
dimension less than k.

More formally, we can define a k-simplex as follows:
Let V = {v0, v1, . . . , vk} be a set of (k + 1) points in Rn that are

affinely independent, i.e., not contained in any (k − 1)-dimensional
affine subspace. The k-simplex σk with vertices v0, v1, . . . , vk is the set
of all convex combinations of these vertices, i.e.,

σk =

{
k∑

i=0

λivi | λi ≥ 0,
k∑

i=0

λi = 1

}
Geometrically, a k-simplex can be visualized as the (k+1)-dimensional

analogue of a triangle, tetrahedron, or any other regular polygon in
lower dimensions.
Example 8.1. • A 0-simplex is a single point.

• A 1-simplex is a line segment connecting two points.
• A 2-simplex is a triangle with three vertices and three edges.
• A 3-simplex is a tetrahedron with four vertices, six edges, and

four faces.
• A 4-simplex is a five-dimensional polytope with five vertices, ten

edges, ten faces, and five cells.
• More generally, an n-simplex is the convex hull of n+1 affinely

independent points in Euclidean space. So, for example, a 5-
simplex is the convex hull of 6 points in 5-dimensional space.

Definition 8.2. A simplicial complex is a topological space con-
structed from a collection of simplices that satisfies the following con-
ditions:

• Closure under faces: If a simplex is in the collection, then all
of its faces are also in the collection.

• Intersection property: The intersection of any two simplices in
the collection is a face (or empty).

Formally, let K be a collection of simplices in some Euclidean space,
Rn. Then K is a simplicial complex if it satisfies the following two
conditions:

• For every simplex σ in K, every face of σ is also in K.
• For any two simplices σ1, σ2 in K, their intersection σ1 ∩ σ2 is

either empty or a face of both σ1 and σ2.
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The simplices in the collection are typically required to be finite and
of finite dimension. The dimension of a simplicial complex is the
maximum dimension of any simplex in the collection.

Example 8.2. Here are some examples of simplicial complexes:
• A 0-dimensional simplicial complex is simply a collection of

points.
• A discrete simplicial complex: This is a collection of points,

where each point is a 0-simplex in the complex. There are no
higher-dimensional simplices.

• A line segment: This is a 1-dimensional simplicial complex,
consisting of two 0-simplices (the endpoints) and a single 1-
simplex (the line segment connecting the endpoints).

• A triangle: This is a 2-dimensional simplicial complex, con-
sisting of three 0-simplices (the vertices), three 1-simplices (the
edges connecting the vertices), and a single 2-simplex (the tri-
angle formed by the three vertices).

• A tetrahedron: This is a 3-dimensional simplicial complex, con-
sisting of four 0-simplices (the vertices), six 1-simplices (the
edges connecting the vertices), four 2-simplices (the faces of the
tetrahedron), and a single 3-simplex (the tetrahedron itself).

Example 8.3. A torus can be represented as a simplicial complex by
gluing together the edges of a square in a particular way. We start with
a square, which can be thought of as a 2-simplex, and then subdivide it
into two triangles, which are each 2-simplices. The resulting simplicial
complex has:

• Four vertices, each corresponding to a corner of the square.
• Four 1-simplices, each corresponding to an edge of the square.
• Two 2-simplices, each corresponding to one of the triangles

formed by the subdivision of the original square.
To obtain the torus, we identify the top edge of the square with the
bottom edge, and the left edge with the right edge, but with a ”twist”
so that the identification is not trivial. This can be visualized as taking
the square, bending it into a cylinder, and then gluing the two ends of
the cylinder together with a twist.

The resulting simplicial complex has a nontrivial first homology group,
which corresponds to the ”hole” in the torus. Specifically, there is a cy-
cle (a closed loop) in the complex that cannot be continuously deformed
to a point, corresponding to a nontrivial element of the first homology
group.
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Definition 8.3. An n-chain is a formal linear combination of n-
simplices in a simplicial complex. It is written as

c =
∑
i

aiσ,

where σi are n-simplices in the simplicial complex and ai are coefficients
from some field (such as the real or complex numbers). The sum is finite
and nonzero for only finitely many i.

Geometrically, an n-chain can be thought of as a collection of n-
dimensional objects (such as triangles, tetrahedra, or higher-dimensional
simplices) that are weighted by some coefficients. For example, a 2-
chain in a simplicial complex could be a weighted sum of triangles,
where the weights correspond to the areas of the triangles.

9. Homology

Homology is a way of assigning algebraic objects (groups) to topo-
logical spaces that capture their topological features. Specifically, the
homology groups of a space measure the number and size of the ”holes”
of various dimensions in the space.

Definition 9.1. A cycle is a formal linear combination of simplices
in a simplicial complex whose boundary is zero. More specifically, an
n-cycle in a simplicial complex X is an n-chain c in X such that the
boundary of c is zero, i.e.,

∂nc = 0,

where ∂n is the boundary operator that maps an n-chain to an (n− 1)-
chain. To be more specific, the boundary operator ∂n is a linear map
that maps an n-chain in a simplicial complex to an (n− 1)-chain, and
is defined as the formal sum of the (n − 1)-dimensional faces of the
n-simplex, each with a sign depending on its orientation.

Intuitively, a cycle can be thought of as a closed loop or surface
that does not have any boundary or edge. For example, a circle in a
2-dimensional simplicial complex can be represented as a 1-cycle.

The set of all cycles in a simplicial complex X, is denoted by Zn and
defined as the kernel of the boundary operator ∂n. That is,

Zn = ker(∂n).

Definition 9.2. A boundary is a formal linear combination of (n−1)-
simplices in a simplicial complex X that lie on the boundary of an
n-simplex in X.
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More formally, the n-th boundary group Bn(X) is the subgroup of
the n-th chain group Cn(X) generated by the boundaries of all (n+1)-
simplices in X:

Bn(X) = {∂(σ) : σ is an (n+ 1)-simplex inX}
where σ is the boundary operator.
Intuitively, a boundary can be thought of as the edge or boundary

of a simplex or surface. For example, in a 2-dimensional simplicial
complex, the boundary of a triangle is a cycle consisting of its three
edges.

Definition 9.3. The nth homology group of a topological space X,
denoted Hn(X), is defined as the quotient group of the nth cycle group,
Zn(X), modulo the nth boundary group, Bn(X):

Hn(X) = Zn(X)/Bn(X)

where a cycle is a chain (a formal linear combination of simplices)
that is the boundary of another chain, and a boundary is a chain that
lies entirely in the boundary of the space X.

In the context of topological data analysis (TDA), homology pro-
vides a powerful tool for analyzing the shape of data sets, which can
be thought of as sampled from an unknown topological space. By com-
puting the homology groups of the simplicial complexes built from the
data, we can extract topological features such as connected compo-
nents, loops, voids, and higher-dimensional structures. This allows us
to gain insight into the shape and structure of the underlying space,
which can be useful in a wide range of applications, including computer
vision, machine learning, and materials science.

10. Limitation and Challenges

10.1. Limitations. The following are limitations of our current ap-
proach:

• Our current approach is restricted to computing features of di-
mensions 0 and 1, while there may exist higher dimensional
features up to dimension 4 in the data. The inability to com-
pute these features may lead to a limited understanding of the
underlying topological structure.

• Our method of sampling point cloud may introduce bias in the
form of an increased number of points in the form of (A, I),
where I denotes the identity matrix. This may have an impact
on the accuracy of our results.
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10.2. Challenges.
• The computational cost associated with creating simplices from

point clouds in higher dimensions is prohibitively expensive,
both in terms of time and memory complexity, posing a signif-
icant challenge for analyzing point clouds with a large number
of dimensions.

• The current sample size used in this study may not be sufficient
to derive meaningful results for higher dimensional features.
Obtaining additional sample points could potentially address
this issue.

11. Future directions

As our work has shown promising results in studying the topological
properties of the space of commuting pairs of SU(2), there are several
directions for future research that could build upon our findings and
expand their scope. These include:

• Developing a new algorithm that can sample random points
more uniformly, thereby resulting in a more accurate represen-
tation of the data.

• Creating a more efficient algorithm that can handle higher
dimensional and more complex data, while minimizing both the
time and memory complexity.

• Generalizing our method to other Lie groups to gain insights
into the topological properties of these groups and their repre-
sentations.

• Discovering a different metric that can reduce the computa-
tional cost in higher dimensions while still preserving important
topological features.

12. Conclusion

In conclusion, the main objective of this project was to investigate
the potential of TDA in analyzing the topological properties of point
clouds obtained from the set of commutating pairs in the group SU(2).
The use of persistent homology and persistent homology barcodes fa-
cilitated the extraction of topological features from the point cloud and
enabled us to obtain a deeper understanding of its underlying structure.
Our findings revealed that the space X consists of a single connected
component and contains no topologically non-trivial loops, which cor-
roborates the results of earlier studies. However, the exponential com-
putational complexity associated with computing persistence diagrams
limited our ability to derive conclusive results from higher dimensions.
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The method is limited to computing features up to dimension 1, and
is affected by the non-uniform sampling of the point cloud. To ad-
dress these limitations, we suggest future directions such as developing
a new algorithm for more uniform point cloud sampling, developing
a more efficient algorithm for handling higher dimensional and more
complex data, generalizing the method to other lie groups, and dis-
covering different metrics that could reduce the computational cost in
higher dimensions. Overall, the method presented in this study pro-
vides insights into the topological properties of the space of commuting
pairs of SU(2) matrices and lays the foundation for future studies on
the topological properties of other spaces.
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