
Pacific Institute for the

Mathematical Sciences

PACIFIC INSTITUTE FOR THE MATHEMATICAL
SCIENCES VIRTUAL EXPERIMENTAL

MATHEMATICS LAB (PIMS VXML) FINAL REPORT:
EXPLORING BOXICITY: GRAPH REPRESENTATIONS

IN MULTIDIMENSIONAL SPACES

AMNA ADNAN*1, MATTHEW BARCLAY*2, MARCO CAODURO†3,
JOSHUA CHILDS*2, WILL EVANS†3, AND TAO GAEDE‡2

1. Introduction

1.1. Introduction to Boxicity. An axis-parallel box in Rd is a Carte-
sian product I1×I2×· · ·×Id, where, for i ∈ {1, 2, . . . , d}, Ii is an interval
of the real line. For a graph G = (V,E), the boxicity of G, denoted by
box(G), is the minimum dimension d such that G is the intersection
graph of a family (Bv)v∈V of d-dimensional boxes.

Definition 1.1.1 (Intersection Graph). Let I = {I1, . . . , In} be a fam-
ily of sets. The intersection graph of I has a vertex vj for each Ij ∈ I,
and two vertices vj, vk are adjacent if and only if Ij ∩ Ik ̸= ∅.

Boxicity was first introduced by Fred S. Roberts in 1969 [17] along-
side cubicity, a similar parameter where the (hyper-)boxes are replaced
by d-dimensional (hyper-)cubes with unit side length. It has been ex-
tensively studied since then, see for example [1, 6, 7, 10, 11, 20].

1.2. Motivation. Boxicity is a continuation and alternative approach
to J.E. Cohen’s ecological niche competition graphs [16]. It arose out
of their shared interest in applications of combinatorics in biology and
the social sciences [18]. Later, in 1981, Roberts and R.J. Opsut [15]
found additional uses in the geometric logistics of airplane fleet main-
tenance.

Boxicity acts as a measure of both the representational complexity of
a system and the dimension of interdependence within a system, such

Date: November 2023 – May 2024.
*Undergraduate Authors. †Faculty Mentor. ‡Graduate Mentor.
1University of Calgary, Calgary, Alberta.
2University of Victoria, Victoria, BC.
3The University of British Columbia, Vancouver, BC.

1

as biological niches, predator-prey relationships, task assignments, and
maintenance schedules [15, 16]. The higher the boxicity, the more di-
mensions are needed to represent the system unambiguously. This can
be useful in organizing work that must be done in real space. If a
system is instantiated in a 2-dimensional floor plan but the system’s
boxicity is at least 4 there are more likely to be interferences within the
system. This is because components of the system will be overlapping
that are not necessarily interdependent.

In addition to its real-world applications, boxicity is interesting from
a purely theoretical point of view as a graph invariant with direct ties
to Euclidean geometry.

1.3. The Initial Problems. During our PIMS VXML project, our su-
pervisor provided us with three initial problems to guide our research
progress. Our supervisor also directed a literature review and pro-
vided exercises to improve our understanding of the concepts and tools
used in the study of boxicity. We then subsequently learned different
methodologies for finding the boxicity and bounds for the boxicity of
a graph.

1. The Boxicity of the Kneser Graph K(7, 3). A Kneser graph K(n, k)
is a graph whose vertices correspond to the k-element subsets of a set
of n elements, and where two vertices are adjacent if and only if the
two corresponding sets are disjoint.

Motivation for why the boxicity of K(7, 3) can be traced back to Cao-
duro’s PhD thesis [2]: The Peterson graph K(5, 2) is a familiar graph
for most, because it often serves as a useful example and counterex-
ample for many problems in graph theory. In the thesis, it is proved
that the boxicity of the Peterson graph is three, and that the approach
can be extended to the line graphs (vis. Definition 2.1.7) of complete
graphs, L(Kn), for n ≥ 2. This prompted further study of box(L(Kn)),
which corresponds to K(n, 2). It was proved by Caoduro and Sebő [4]
that Kneser graphs of the form K(n, 2) have boxicity n−2 for all n ≥ 5.
To push for a more general result, of box(K(n, k)), it would be fruitful
to focus on the next smallest nontrivial graph: K(7, 3).

2. The Boxicity of the Mycielskian of a Cycle. Another motivating
problem was proving that the boxicity of the Mycielskian (vis. Defini-
tion 5.0.1) of a cycle, M(Ck), was equal to 3 for all k ≥ 5.

2

Motivation for why the boxicity of the Mycielskian is interesting is
outlined by Kamibeppu in [12]: An implication of a theorem relating
the boxicity of a graph and its chromatic number, proved by Chandran
et al. [5], was that if box(G) is close to the maximum boxicity, then
the chromatic number of the graph must be large. As Kamibeppu [12]
explains, it is a natural question to wonder about the boxicity of the
Mycielskian of a graph, because the chromatic number of the Myciel-
skian of G is more than that of G.

3. The Boxicity of the Complement of a Tree. Finally, we explored the
boxicity of complements of trees and similar structures. Given that
computing the boxicity of a graph is NP-hard, as shown by Cozzens
[8], our goal is to find non-trivial graph classes for which it is possible
to compute boxicity in polynomial time.

To work on these problems and other research interests, we learned
different methodologies for finding the boxicity of a graph.

1.4. Overview. In Section 2, we define fundamental graphs, graph
structures, graph operations, and the tools used in our study of boxicity.
We also explain a construction taken from Caoduro and Sebő [4] and
how it is used to find the upper bound of the boxicity of a graph. There
are four theoretical results and explorations covered, while the bulk
of the computational progress is focused on Kneser graphs. Section 3
covers an algorithm used to compute the boxicity of the complement of
a tree. This relies on a construction called ants being maximal interval-
order subgraphs for trees. Section 4 offers a similar result using crabs,
another construction we define, coverings to find the boxicity of the
complement of line graphs of trees. Section 5 covers the exploration into
the boxicity of the Mycielskian (vis. Definition 5.0.1) of a cycle, M(Ck),
and Section 6 an investigation inspired by the exploration of M(Ck).
The computational work on the boxicity of the Kneser graph is covered
in Section 7, and the report closes by discussing future directions in
Section 8.

2. Background and Methods

We discuss the tools used in our study of boxicity, and review im-
portant classes of graphs that we explored in our research. All graphs
herein are assumed to be simple and undirected, that is, there is at most
one edge between any two vertices, and no edges are loops connected
to only one vertex.

3

2.1. Basic Graph Structures. Some fundamental definitions used in
graph theory. Let G = (V,E) be a graph.

Definition 2.1.1 (Complete Graph). G is a complete graph if uv ∈ E
for each pair of distinct vertices u, v ∈ V . A complete graph on n
vertices is denoted by Kn.

Definition 2.1.2 (Induced Subgraph). Let U ⊂ V (G). The induced
subgraph of U on G is the graph H on the vertex set U , where for each
edge uv ∈ E(G), uv ∈ E(H) if and only if u, v ∈ U .

Definition 2.1.3 (Clique). A subset Q ⊂ V (G), is a Clique if Q = Kn

as an induced subgraph of G for some n.

Definition 2.1.4 (Independent Set). Let S ⊂ V (G). S is an indepen-
dent set if for every pair of vertices u, v ∈ S, uv /∈ E.

Definition 2.1.5 (Neighbourhood). Let v ∈ V (G). The open neigh-
bourhood of v, denoted N(v), is the set of all vertices adjacent to v.
The closed neighbourhood of v, denoted by N [v], is the set N(v)∪{v}.

We can also modify common graph classes in several ways to produce
new graphs; we investigate the boxicity of several such derived classes
in future sections of this report.

Definition 2.1.6 (Complement). The complement of a graph G =
(V,E) is a graph G = (V,E). The complement graph has the same
vertex set as G, but a complementary edge set. The edge set is defined
as

E(G) := {uv : u, v ∈ V (G) and uv /∈ E(G)}.
As highlighted in Subsection 2.3, when studying the boxicity of a

graph G we are almost always working in the complement graph G.

Definition 2.1.7 (Line Graph). Let G = (V,E) be a graph. The line
graph of G, denoted L(G), is the graph with vertex set

V (L(G)) = {ve | e ∈ E(G)} ,
and for two vertices ve, vf ∈ V (L(G)), vevf ∈ E(L(G)) if and only if e
and f are adjacent (share a vertex) in G.

We study line graphs of trees in Subsection 3.

2.2. Interval-Order Subgraphs.

Definition 2.2.1 (Interval Graph). Let G = (V,E) be a graph. G
is an interval graph if G is the intersection graph of line segments in
the real line. For all u ∈ V (G) assign an interval Iu ⊆ R such that
Iu ∩ Iv ̸= ∅ if and only if uv ∈ E(G).

4

Figure 1. Example of an interval box construction on C5

Interval graphs are one-dimensional box representations of graphs;
if a graph has boxicity 1, it is an interval graph. In this way boxicity
is the k-dimensional extension of interval graphs. A box-intersection
representation of a graph G may be constructed by the intersection of
interval graphs. This is described in the following theorem.

Theorem 2.1. A graph G has boxicity at most k if and only if it can
be represented as the intersection graph of k interval graph representa-
tions.

See Figure 1.

Depending on the graph you are working with, taking these inter-
sections can be difficult. Intersections are reductive, not constructive,
requiring a reasonable estimate of a graph’s boxicity. Computationally
working with intersections often necessitates nested recursive searches,
which are undesirable as they may greatly increase an algorithm’s run
time.

To avoid these challenges we want a tool for finding boxicity that
works on a graph directly, and is constructive.

Definition 2.2.2 (Co-Interval Graph). A graph G is co-interval if it
is the complement of an interval graph.

Definition 2.2.3 (Interval-Order Subgraph [4]). Let G = (V,E) be a
graph, and let σ = (v1, v2, . . . , vn) be an ordered permutation of V (G).
We construct an interval-order subgraph of G, Gσ = (V,Eσ), as fol-
lows: let V0 = V (G), and let Vi = Vi−1 ∩NG(vi) for i ∈ {1, . . . , n}. We
can think of Vi as the set of live vertices at step i; we thus call Vi the
live set. The edge set is Eσ = E1∪E2∪ . . .∪En−1 ⊆ E(G), where each
Ei is the set of edges {viu | u ∈ Vi}; that is, at step i we add to Eσ the
edges between vi and each vertex in the live set Vi.

For any ordering σ of V (G), Gσ is a co-interval subgraph of G [4].
For this reason, co-interval subgraphs will be hereafter referred to as
interval-order subgraphs. See Figure 2.

5

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

Choice Open Set Sub Graph

Figure 2. Example of an interval order construction

When utilizing the above construction, there are often vertices near
the end of an ordering that are ‘left out’, so to speak, by not being
connected to the body of the subgraph. Thankfully, these isolated
vertices do not affect the process.

Lemma 2.2 (Cozzens and Roberts, 1983 [9]). If G is an interval-order
graph, then G plus k isolated vertices is an interval-order graph.

Proof. Let H be the graph containing G and k isolated vertices. Since
G is an interval graph, H must be as well; each isolated vertex in H is
adjacent to all other vertices in H, so it is trivial to extend the interval
representation of G to an interval representation of H. □

This means that we can assume any interval-order subgraph of G
contains all of the vertices of V (G), reducing our problem to finding
spanning subgraphs whose unions cover the edges of G.

2.3. Graph Coverings. We begin with some important definitions,
and introduce our main tool for studying boxicity.

Definition 2.3.1 (Graph Covering). Let G = (V,E) be a graph, and
let F = {H1, H2, . . . , Hk} be a family of subgraphs of G. We say that

6

F covers G if the graph union

H = H1 ∪H2 ∪ · · · ∪Hk,

defined by V (H) = ∪k
i=1V (Hi) and E(H) = ∪k

i=1E(Hi), is equal to G.
That is, V (H) = V (G) and E(H) = E(G)

Definition 2.3.2 (Interval-Order Cover). Let G = (V,E) be a graph,
and let F = {H1, H2, . . . , Hk} be a family of interval-order subgraphs
of G. We say that F is a k-interval-order cover of G if and only if F
covers G.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v12

σ1 = (v4, v6, v8, . . .) σ2 = (v8, v12, . . .)

Figure 3. Example of an interval order cover

The following lemma is the cornerstone of our research. We will use
this extensively to find upper bounds on the boxicity of various graphs
and graph classes.

Lemma 2.3 (Cozzens and Roberts, 1983 [9]). Let G = (V,E) be a
graph, and let G be its complement. Then box(G) ≤ k if and only if G
has a k-interval-order cover.

Thus, when we are looking for upper bounds on box(G), we wish to
use the least number of interval-order subgraphs in our covering of G.
Hence we are only interested in such subgraphs which aremaximal, that
is, those which can not be covered entirely with another interval-order
subgraph. We refer to the following definition.

Definition 2.3.3 (Maximal Interval-Order Subgraphs (MIOS)). Let
G = (V,E) be a graph, and let σ be an ordering of V (G). We say

7

that Gσ is inclusion-wise maximal if and only if there does not exist a
ordering τ of V (G) such that Gσ is a proper subgraph of Gτ .

Following the example of previous literature (see for e.g. [3], [4]),
we seek ways of characterizing the maximal interval-order subgraphs
of select graph classes.

If we can characterize (or better, enumerate) the maximal interval-
order subgraphs of a graph, then it becomes much easier to find a
minimal covering of the graph’s complement. Without such character-
izations, we would have to try every possible interval-order subgraph
to find a potentially minimal covering.

2.4. Vertex Orderings. As interval-order subgraphs are built using
vertex orderings, the permutations of V (G) can be used to characterize
these subgraphs. When building interval-order subgraphs, we often
refer to partial orderings : incomplete lists of vertices. There are several
useful lemmas that aid in finishing these partial orderings. Herein, the
algorithm refers to 2.2.3.

Definition 2.4.1 (Partial Ordering). Let G = (V,E) be a graph of
order n. A partial ordering σi of V (G) is a list of i < n vertices. We
also use σi to refer to the set of vertices in the partial ordering.

Lemma 2.4 (Caoduro and Sebő, 2023 [4]). Let ∆ be the maximum
degree of a graph G. Then the live set of vertices Vi is nonempty for at
most ∆ steps of the algorithm. That is, V∆+1 = ∅.

Proof. Let σ = {v1, v2, . . . , v∆, . . . , vn} be a vertex ordering on a graph
G, and let u ∈ V (G) be a vertex of degree ∆. Suppose u is in
N(v1), N(v2), . . . , N(v∆). Then u ∈ V∆. But u has degree ∆, so it
cannot be in N(v∆+1). Thus V∆+1 = V∆ ∩N(v∆+1) = ∅. □

Lemma 2.5 (Caoduro and Sebő, 2023 [4]). If |Vi| = 2, then there are
exactly two ways to maximally finish the partial ordering.

Proof. Let σi be a partial ordering, and let Vi = {u, v}, where u, v /∈ σi.
To maximize edge-inclusion, first add all vertices in (N(u)∩N(v))\σi.
Then we can either add all the remaining vertices neighbouring u, or
those neighbouring v. Afterwards, the live set is empty and any unused
vertices can be added to the partial ordering with arbitrary order. □

3. Algorithm for Producing a Family of Ants Used to
Compute the Boxicity of the Complement of a Tree T

One of our main results was a polynomial-time algorithm that pro-
duces a family of ants that can be used to compute the boxicity of the

8

complement of a tree T . By this, we mean that by finding a minimum
ant-covering of trees in polynomial time, we were able to obtain an
algorithm to compute the boxicity of the complement of a tree.

Note: Proofs will be presented in an extended version of
this report under preparation.

3.1. Preliminaries. We define a tree graph in the standard way:

Definition 3.1.1 (Trees and Forests). A graph T = (V,E) is called
a tree if it is connected and acyclic. A forest is an acyclic graph, one
where every disconnected component is a tree.

Hereafter, a graph labelled T will always refer to a tree.

Definition 3.1.2 (Leaf). For a tree T , a vertex of degree 1 is a leaf.

3.2. Characterizing the Maximal Interval-Order Subgraphs.
From Lemma 2.3, we know that box(G) ≤ k if and only if G has a
k-interval-order cover, Definition 2.3.2. So, to determine the upper
bound on box(G), we need to cover the edges of G with as few maxi-
mal interval-order subgraphs as possible.

The maximal interval-order subgraphs for trees are completely char-
acterized by a construction we define as ants.

Definition 3.2.1 (uv-ant). Let G = (V,E) be a graph and uv ∈ E.
A uv-ant with respect to G is the graph A having vertex-set V (A) :=
N(u) ∪ N(v) and edge set E(A) := δ(u) ∪ δ(v). We call the edge uv
the body of the ant and the edges E(A) \ {uv} the legs of the ant. See
Figure 4 for an illustration.

u v

Body

LegsLegs

Figure 4. Example of a uv-ant with the legs and body labelled

We use the following Lemma 3.1 from Cozzens and Roberts [9]:

Lemma 3.1 (Cozzens and Roberts [9]). Let G be a graph, and let
uv ∈ E(G). Then the uv-ant is an interval-order subgraph.

9

Essentially, we can completely characterize the maximal interval-
order subgraphs of trees, they turn out to be ants.

Lemma 3.2. Let H be a subgraph of T . If H is a maximal interval-
order subgraph of T , then H is a uv-ant for some uv ∈ E(T).

Now that we can characterize the maximal interval-order subgraphs
for trees as ants, Definition 3.2.1, it becomes much easier to find a
minimal covering with maximal interval-order subgraphs, ants 3.2.1, of
T .

3.3. Finding a Minimal Covering with Maximal Interval-Order
Subgraphs, Ants 3.2.1, of T . We define the ant-packing number and
the ant-covering number of a graph G by the following:

Definition 3.3.1 (Ant-Packing Number). Let G be a graph. The ant-
packing number of G, denoted by αA(G), is the maximum number of
pairwise edge-disjoint ants in G.

u1

v1 u2v2

u3

v3

Figure 5. Example of an ant-packing of a graph G

Definition 3.3.2 (Ant-Covering Number). Let G be a graph. The ant-
covering number of G, denoted by τA(G), is the minimum number of
ants needed to cover the edges of G.

10

u1

v1

u2

v2

u3
v3

u4

v4

Figure 6. Example of an ant-covering of a graph G

As mentioned before, generally for a graph, G, the covering, νA, is
at least the packing, τA, i.e. τA ≤ νA. We can see why the ant-covering
number, τA(G), is upper-bounded by the ant-packing number, αA(G),
using Figure 5 and Figure 6. Since each ant in a packing must be
disjoint, the number of ants in a maximal packing αA(G) is bounded
above by the number of ants in a minimal covering τA, where overlaps
are allowed. The covering, νA, and packing, τA, are not necessarily
equal, but in trees they are.

The relationships between the boxicity of the complement of T,
box(T), and the ant-packing number, αA(G), and the ant-covering
number, τA(G), are outlined by the following Lemma:

Lemma 3.3. Let T be a tree. Then, νA(T) ≤ box(T) ≤ τA(T).

We will see that the aforementioned algorithm proves that for a tree,
the ant-packing number and the ant-covering number are equal:

Theorem 3.4. Let T be a tree, then αA(T) = τA(T).

The proof of Theorem 3.4 is algorithmic. Since for a tree T , box(T) =
αA(T) = τA(T), this algorithm can be used to compute the boxicity of
the complement of a tree in polynomial time.

11

Now, because for a tree T , αA(T) ≤ box(T) ≤ τA(T) and the algo-
rithm proves that αA(T) = τA(T), we have box(T) = αA(T) = τA(T).

Therefore as a Corollary of Theorem 3.4, we can compute the boxi-
city of the complement of a tree in polynomial-time.

Theorem 3.5 (Corollary of Theorem 3.4). Using Algorithm 3.4, we
can compute the boxicity of the complement of T, box(T), in polynomial
time.

3.4. Algorithm. The algorithm makes mention of “almost-leaves”,
which can be defined as follows:

Definition 3.4.1. An almost-leaf can be defined as a vertex that be-
comes a leaf after all leaves of the original tree T are removed.

Leaf

Almost Leaf

Figure 7. Example a graph G with leaves and almost-leaves

For a tree T rooted at a vertex r, we define the depth, d, of a vertex,
and the height h of the tree as follows:

Definition 3.4.2. Let T be a tree rooted at r. The depth, d, of a
vertex, v, is the distance between v and r.

Definition 3.4.3. Let T be a tree rooted at r. The height, h, of T is
the maximum distance between r and a leaf, l, i.e. h = max{d(r, l)}.

text

12

Algorithm:

If the graph G is a forest, then this algorithm is performed for each
connected component in parallel.

(1) Choose an arbitrary vertex, r, and root the tree, T , at r.

For a connected component, if the height, h, is at most 2, then
for each depth 1 vertex, there will be an ant for the covering
and packing, therefore we can see that αA(T) = τA(T).

(2) For the tree T , rooted at r, select all almost leaves furthest
away from the root vertex.

(3) Label each almost leaf, uh,i, where h is the height of the tree,
and i is the almost-leaf count for the tree T .

(4) Label the almost leaf, uh,i, and choose a non-leaf neighbour of
uh,i and label it vh,i. Subsequently, choose a neighbour of uh,i

which is a leaf and call it lh,i.

In summary, uh,i is an almost-leaf, vh,i ∈ N [ui] is not a leaf, and
lh,i ∈ N [ui] is a leaf.

(5) Use u and v to construct an u, v-ant.
(6) We define a class C, C := C ∪ {ui, vi}, where the bodies of

the ants used for covering are stored; and a class P , P :=
P ∪ {ui, li}, where the bodies of the ants used for packing are
stored.

For each almost-leaf, we get one packing ant and one covering
ant.

(7) Now define Th−1 as Th minus the edges of the uh,i − vh,i ant.
(8) Repeat this process.

text
We prove that the algorithm produces a minimum ant-covering and

a maximum ant-packing in an extended version of the report that is
under preparation.

Because the ant-packing and ant-covering are equal for trees, we have
a minimal ant-cover.

13

Recall that ants are the maximal interval-order subgraphs for trees.
Given that we have obtained a minimal maximal interval-order sub-
graph covering, we know the boxicity of the complement of the tree, T ,
because for a tree T , αA(T) ≤ box(T) ≤ τA(T) and the algorithm proves
that αA(T) = τA(T), so we have box(T) = αA(T) = τA(T). Therefore
as a Corollary of Theorem 3.4, the Algorithm allows us to compute the
boxicity of the complement of a tree, box(T), in polynomial-time.

8

7

6

5

4

3

2

1

l7,1 l7,2 l7,3 l7,4

u7,1 u7,2 u7,3 u7,4

v7,1

v7,2

v7,3

v7,4

8

7

6

5

4

3

2

1

R R

Td Td−1

Figure 8. The original graph Td with the almost leaves,
ud,i, in red, the neighbours of ud,i that are not leaves, vd,i,
in blue, and the neighbours of ud,i that are leaves, ld,i, in
green. The uv-ants constructed from the u’s and v’s are
in orange (these are maximal interval-order subgraphs for
a tree). Td−1 is the original graph minus the constructed
ants.

4. Line Graphs of Trees

We have a similar result to the ant coverings of trees using crab
coverings to find the boxicity of the complement of line graphs of trees.
When working on the ant-packing-covering algorithm a nice proof of the
existence of such an algorithm was outlined in parallel by Tao Gaede.
This proof iterated over the line graph, and was useful in showing the
following result.

14

4.1. Line Graphs of Trees. After looking at one class of graph it
may be natural to consider their line graphs, as all graphs on greater
than four vertices have a unique bijection to their line graph. The line
graph of a tree appears similar to a tree; instead of branching edges,
it consists of branching cliques. This visual similarity was believed to
have significance with respect to boxicity as cliques are often included
in a MIOS.

Definition 4.1.1 ((u,v,K)-Crab). Let G = (V,E) be a non-complete
graph, let K be a clique in G, and u, v ∈ V (K). A (u,v,K)-crab with
respect to G is the graph C having vertex-set V (C) = N [u] ∪N [v] and
the edge set E(C) = δ(u)∪δ(v)∪E(K). We call the clique K the body
of the crab and the edges E(C) \ E(K) the legs of the crab.

K6−body

u v

LegsLegs

Figure 9. Example of a Crab

Lemma 4.1. Let G be a subgraph of L(T). If G is a maximal interval-
order subgraph of L(T), then G is a K-crab for K ⊂ L(T) and K a
clique.

Theorem 4.2 (Existence of Polynomial Time Algorithm to determine
the Boxicity of the Co-Line graph of a Tree). Given a tree T , there
exists a polynomial time algorithm which determines the boxicity of
L(T), the complement of its line graph.

A detailed proof of this will appear in an extended upcoming manu-
script. This follows a similar algorithm to that of the ant covering and
packing shown in Subsection 3.4.

5. The Mycielskian

Definition 5.0.1 (Mycielskian [14]). Let G = (V,E) be a graph. The
Mycielskian of G, denoted M(G) or µ(G), is derived as follows: let

15

V (G) = {v1, v2, . . . , vn}, and create a copy V ′(G) = {u1, u2, . . . , un}.
The vertices of M(G) is the set

V (M(G)) = V (G) ∪ V ′(G) ∪ {w} .
For each ui ∈ V ′(G), i ∈ {1, . . . , n}, we define Ei(G) = {uivj | vj ∈ N(vi)},
and define E0 = {wui | ui ∈ V ′(G)}. Then the edges of M(G) are

E(M(G)) = E(G) ∪ E1(G) ∪ · · · ∪ En(G) ∪ E0(G).

{vi} {ui}

w

{ui}{vi}

w

Figure 10. Example of the Mycielskian of C5 and its complement

5.1. The Mycielskian of Cycles. The initial exploration into the
problem of boxicity of the Mycielskian of a cycle, M(Ck), was equal
to 3 for all k ≥ 5 consisted of finding the maximal interval-order sub-
graphs for the complements of M(Ck) for k ≤ 5. We obtained a covering

of two maximal interval-order subgraphs for M(C3), and M(C4). For

M(C5), there was a covering of three maximal interval-order subgraphs.

We began by attempting to prove the lower bound for box(M(Ck)) =
3, ∀k ≥ 5. Our two avenues of exploration consisted of:

(1) Showing that it is not possible to cover M(C5) with only 2
maximal interval-order subgraphs

(2) Bi-colouring, the method used by Caoduro in [2] to prove the
lower bound for M(C5): If it is supposed, for contradiction,
that box(M(C5)) ≤ 2, then by Lemma 2.3 we know M(C5) can
be covered by the edges of two co-interval graphs, with red
edges and blue edges. The edges covered by subgraph 1 can be
coloured red, and subgraph 2, blue, (not mutually exclusive).
Since any induced C5 must have boxicity 2, and we know [2]
that it has no two-coloured edges, we can use the C5 because the
complement of the original C5 subgraph is also a C5 subgraph)

in M(C5), with only an initial arbitrary colour assumption (that
M(C5)) is two-colourable), to show that some edge in the C5

must have two colours.

16

For Ck for k ≥ 6, not all M(Ck) contain an induced C5, therefore the
bi-colouring method was not explored further.

5.1.1. Mycielskian Construction Error. When investigating the My-
cielskian of a cycle a mistake in the complement where the set of v
vertices V (G) ⊂ V (M(Ck) was independent, denoted M∗(G), gave rise
to an edge counting argument restricting the possible maximal interval-
order covers. The question became: Was it possible for a MIOS to cover
more than half of the edges between V (G) and V ′(G)? If there was
no MIOS 2-cover. By dividing the problem into 3 cases determined by
where the order is started in the construction of a MIOS, a v ∈ V (G)
vertex, u ∈ V ′(G) vertex, or the w ∈ V (M∗(G) \ V (G) ∪ V ′(G) ver-
tex. This reduced the problem to 6 cases, one for each possible pair.
Resulting in the following intermediate result.

Theorem 5.1. box(M∗(Ck)) = 3 for all k.

First it was proved that if the V (G) to V ′(G) edges are not covered
for even k then they are not for odd k. Then by contradiction on
all 6 cases shown there is no possible MIOS 2-cover and a covering of
all edges between V (Ck) and V ′(Ck) for even k. For interest, the M∗

construction recreated from the mistaken complement is below:

Definition 5.1.1. For a graph G = (V,E), M∗(G) is the graph de-
rived from G by following the Mycielskian construction as normal then
replace E(G) with E(Kn), where n = |G|.

The techniques derived from the M∗ mistake ultimately lead to
progress on finding box(M(Ck)), and new proof for box(M(Kn))

5.1.2. Mycielskian of Cycle Progress. In the proper construction V (G)
is not an independent set which makes the 6 cases to investigate more
complicated as there are less restrictions on the possible MIOS. The
following lemmas have been shown by deriving a contradiction using
the edge counting method on 4 for the cases.

Lemma 5.2. For M(Ck) there is no MIOS 2-cover of M(Ck) where
either order σ1 or σ2 has v1 = w.

Lemma 5.3. For M(Ck) there is no MIOS 2-cover of M(Ck) where
both orders σ1 and σ2 have v1 ∈ V ′(G).

The two cases which remain are:

(1) for v1 ∈ σ1, v1 ∈ V ′(G) and for u1 ∈ σ2, u1 ∈ V (G)
(2) for v1 ∈ σ1, v1 ∈ V (G) and for u1 ∈ σ2, u1 ∈ V (G)

17

The current work on the remaining two cases is being done by con-
structing the two orders in parallel, and tracking the edges excluded
by each order as each new vertex is added then and showing that σ1

and σ2 cannot the partition the edge set.

5.1.3. Mycielskian of Complete Graph Redundancy. While the proof
of the boxicity for M(Ck) has not been completed, work on it, the
mistaken construction, and the edge counting method have led to an
independent and novel proof of the boxicity of the Mycielskian of a
complete graph.

Theorem 5.4. box(M(Kn)) =
⌊
n
2

⌋
+ 1

This in-turn has led to work on split graphs as M(G) \ {w} is a split
graph.

6. Split Graphs

Our investigation of the Mycielskian of cycles led to the Mycielskian
of complete graphs and then questions about the iterated Mycielskian
of complete graphs. These all involve an independent set in M(G) and

a large clique in M(G). Cliques seemed natural to focus on as they are
induced subgraphs of boxicity-0. The Question of cubicity then arose,
and it was quickly realized that a cube-intersection representation of a
clique had a finite-content bound. This with the predictable geometry
of unit-cubes, and their arrangement within a fixed volume, has led to
the beginning of a classification and explicit description of the cubicity
of split graphs with respect to their clique size and independent set
size.

Cubicity was first introduced by Fred S. Roberts in 1969 alongside
Boxicity, and is where the boxes are d-dimensional unit cubes.

Definition 6.0.1 (Unit Cube). A unit-cube is an axis-parallel box
where all intervals Ii are of unit length.

Definition 6.0.2 (Cubicity). Let G = (V,E) be a graph and uv ∈
E. The cubicity of G, denoted by cub(G), is the minimum dimen-
sion d such that G is the intersection graph of a family (Cv)v∈V of
d-dimensional unit-cubes in Rd.

Definition 6.0.3 (Split Graph). Let G = (V,E) be a graph. G is a
split graph if V (G) = K ∪ S, where S is an independent set, and K is
a maximal clique of G.

18

Figure 11. Example of a split graph and unit-cube representation

6.1. Preliminary Clique and Independent Set Results. Because
cubicity is defined using unit cubes there is a finite volume in which to
arrange the independent set vertex cubes about a clique. This realiza-
tion led to the following results.

Lemma 6.1. Let G = Kn be a complete graph on n vertices. The
d-dimensional representation of G is contained within a d-dimensional
cube of side length 2, furthermore each k-dimensional polytope compo-
nent of the cube P k (k = 1 side, k = 2 face, . . . , etc.) is of k-content
2k for k ≥ 1.

Lemma 6.2. Let G = (V,E) be a split graph with clique K, for |K| =
n, independent set S, and cub(G) = d. Then the maximum number of
vertices v ∈ S of degree n− 1 is 2d − 1.

Lemma 6.3. Let G = (V,E) be a split graph with clique K, indepen-
dent set S, and cub(G) = d. For |K| ≥ 2d, the maximum number of
vertices v ∈ S is 3d.

6.2. Cubicity with Cycles and Independent Sets. The volume
and dimension constraint methods as those used in complete graphs
and split graphs above can be applied to cycles and cycles with in-
dependent sets the following were derived in the process of finding
generalized results about graphs with cycles as induced subgraphs.

Lemma 6.4. For Ck a cycle, given a cubicity-2 representation of Ck

the maximum area contained within the cycle is

1

8
(k − 4)k + 1

19

Lemma 6.5. Let G = (V,E) be a graph with cub(G) = d. If P ⊂ V (G)
is a pairwise independent set of vertices then then for Q ⊂ V (G) a
pairwise independent set adjacent to all v ∈ P ,

|Q|+ |P | ≤ 2d + 1

6.3. Extending the Cubicity Results. These preliminary results
suggest that there may be a generalized method for finding the cubicity
of a split graph, as well a method for finding a cubicity bound on the
Mycielskian, M(G), for all G.

7. The Kneser Graph

7.1. Introduction to Kneser Graphs. One class of note are the
Kneser graphs. First introduced by M. Kneser in 1955 [13], the boxicity
of these graphs has been well-studied, see [2], [3], and [4].

The Kneser graph K(5, 2) is, in fact, isomorphic to the Petersen
Graph.

Definition 7.1.1 (Kneser Graph). Let k, n ∈ Z+ such that n ≥ 2k +
1. A Kneser graph K(n, k) is the graph with the vertex set V =

{1, . . . , n}[k], i.e. all k-subsets of [n], and an edge between two ver-
tices if and only if the respective sets are disjoint.

{1,2}

{3, 4}

{1, 5}

{4, 5} {3, 5}

{1, 3} {2, 5}

{1, 4} {2, 4}

{2, 3}

Figure 12. The Kneser Graph K(5, 2)

Lemma 7.1 (Boxicity Upper Bound [3]). Let n ≥ 2k + 1, and let
K(n, k) be a Kneser graph. Then box(K(n, k)) ≤ n− 2.

Caoduro and Sebő (2023) proved that Kneser graphs of the form
K(n, 2) have boxicity n − 2 for all n ≥ 5, improved a lower bound

20

for large Kneser graphs with n ≥ 2k3 − 2k2 + 1, and derived general
upper bounds on the boxicity [4]. Furthermore, they conjectured that
box(K(n, k)) = n − k. Hoping to further this research, we focused on
the next smallest graph K(7, 3).

From the literature, we know that box(K(7, 3)) ≤ 5. Proving the
upper bound is easy; one merely needs to find a k-interval-order cov-
ering of the complement. However, the lower bound is much more
intractable. To prove that box(K(7, 3)) > 4, one must show that any
combination of four maximal interval-order subgraphs cannot cover all
of the edges of the graph; that is, five is required.

Hereafter, define G := K(7, 3), the complement graph of K(7, 3).
Subgraphs of G will be referred to by their vertex orderings.

The primary goal of this work was to categorize the maximal interval-
order subgraphs of G. The main difficulty with this endeavour was the
sheer number of possible vertex orderings that can produce subgraphs;
as G is 30-regular, there are

(
35
30

)
possible orderings. Thus it was imper-

ative to find ways of discarding obviously non-inclusion-wise-maximal
orderings.

In addition, as the Kneser graphs are vertex-transitive and symmet-
ric, we can group together completed interval-order subgraphs by their
isomorphism classes, further reducing the number of subgraphs we need
to categorize and check for maximality.

We approached the problem from several different angles, trying al-
gorithmic, exhaustive, and novel search methods. We discuss one such
method here.

7.2. The Greedy Algorithm. Our first approach to finding maximal
interval-order subgraphs was a simple edge-greedy method, where at
each step of the construction we choose the vertex that would add
the greatest number of new edges to the incomplete subgraph. When
building the orderings, we used the following algorithm.

Let k < 30 and let σk = (v1, . . . , vk) be a partial ordering. Define
Rk = V (G) \ {σk} to be the remaining (unused) vertices. We select
vk+1 as follows:

(1) For each unused vertex uj in R, define dj = |Vk ∩N(uj)| to be
the out-degree of uj.

(2) Let D = {dj : uj ∈ R} be the set of all out-degrees in R. Let
dmax = max(D).

(3) Append the vertex uj with dj = dmax to σk, creating σk+1. If
multiple vertices have maximum out-degree, select one arbitrar-
ily.

21

This produced a number of large interval-order subgraphs, no two
of which were isomorphic. We believe the multitude of non-isomorphic
graphs is due, at least in part, to inherent biases in the underlying
data structures. The vertices were stored as ordered lists, and when
the program chose an ‘arbitrary’ vertex, it tended to select those stored
near the end of the list due to how the search was coded.

We conjecture that this algorithm always produces a maximal interval-
order subgraph, but we were unable to find a succinct proof on the mat-
ter as of the time of writing. We hope to either prove this conjecture
or find a counterexample in future work.

Of note is the number of non-isomorphic (maximal) interval-order
subgraphs we found for K(7, 3). Caoduro and Sebő found that there
were a total of four non-isomorphic maximal interval-order subgraphs of
K(5, 2), which could be easily characterized [4]. This seems to suggest
that the k = 3 case is much more complex than the k = 2 case, and
novel methods will need to be developed to further progress on this
problem, as the current tools used to prove the boxicity of K(n, 2)
graphs are insufficient to tackle this much larger problem.

Code can be found in Appendix A. All functions were written in
SageMath 10.2, using standard libraries.

8. Future directions

It was shown by Cozzens [8] that computing the boxicity of a graph
is NP–hard. That is why we pursue the problem of finding the boxicity
for certain classes of graphs.

As described in Subsection 3 and Subsection 4, we have obtained
polynomial-time algorithms for computing the boxicity of the comple-
ments of trees and the complements of line graphs of trees.

Given that trees are outer planar graphs, we can probe for a more
general result. Now that we have an algorithm for computing the box-
icity of the complement of a tree, it might be possible to derive an
algorithm for computing the boxicity of the complement of an outer-
planar graph. Note that the boxicity of outerplanar graphs has been
proved by Scheinerman [19] to be most 2.

Further work on proving that the boxicity of the Mycielskian of a
cycle, M(Ck), was equal to 3 for all k ≥ 5 would also be considered a
productive endeavour. In the interest of time, we left some potential
avenues unexplored, and we would like to continue this work.

22

References

[1] A. Adiga, D. Bhowmick, and L. S. Chandran. Boxicity and poset dimension.
SIAM Journal on Discrete Mathematics, 25(4):1687–1698, 2011.

[2] M. Caoduro. Geometric challenges in combinatorial optimization : packing,
hitting, and coloring rectangles. Theses, Université Grenoble Alpes [2020-....],
Nov. 2022.

[3] M. Caoduro and L. Lichev. On the boxicity of kneser graphs and complements
of line graphs. Discrete Mathematics, 346(5):113333, 2023.

[4] M. Caoduro and A. Sebő. Boxicity and interval-orders: Petersen and the com-
plements of line graphs, 2023.

[5] L. S. Chandran, A. Das, and C. Shah. Cubicity, boxicity and vertex cover,
2007.

[6] L. S. Chandran, M. C. Francis, and N. Sivadasan. Boxicity and maximum
degree. Journal of Combinatorial Theory, Series B, 98(2):443–445, 2008.

[7] L. S. Chandran and N. Sivadasan. Boxicity and treewidth. Journal of Combi-
natorial Theory, Series B, 97(5):733–744, 2007.

[8] M. B. Cozzens. Higher and multidimensional analogues of interval graphs. The-
ses, Rutgers University, New Brunswick, 1981.

[9] M. B. Cozzens and F. S. Roberts. Computing the boxicity of a graph by
covering its complement by cointerval graphs. Discrete Applied Mathematics,
6(3):217–228, 1983.

[10] L. Esperet. Boxicity of graphs with bounded degree. European Journal of Com-
binatorics, 30(5):1277–1280, 2009.

[11] L. Esperet and G. Joret. Boxicity of graphs on surfaces. Graphs and combina-
torics, 29(3):417–427, 2013.

[12] A. Kamibeppu. Bounds for the boxicity of mycielski graphs, 2015.
[13] M. Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-

Vereinigung 2, 27, 1955.
[14] J. Mycielski. Sur le coloriage des graphs. Colloquium Mathematicum, 3:161–

162, 1955.
[15] R. J. Opsut, F. S. Roberts, et al. On the fleet maintenance, mobile radio

frequency, task assignment, and traffic phasing problems. The theory and ap-
plications of graphs, pages 479–492, 1981.

[16] F. Roberts. Food webs, competition graphs, and the boxicity of ecological phase
space, pages 477–490. 11 2006.

[17] F. S. Roberts. On the boxicity and cubicity of a graph. Recent progress in
combinatorics, 1:301–310, 1969.

[18] F. S. Roberts. Discrete mathematical models, with applications to social, bio-
logical, and environmental problems. 1976.

[19] E. R. Scheinerman. Intersection classes and multiple intersection parameters.
Theses, Princeton University, 1984.

[20] A. Scott and D. Wood. Better bounds for poset dimension and boxicity. Trans-
actions of the American Mathematical Society, 373(3):2157–2172, 2020.

23

Appendix A. Code

1 def greedyVertices(liveVertices , usedVertices):

2 remainingVertices = set(kgc.vertices ()).difference(

set(usedVertices))

3 tempNewLiveVertices = [(v, liveVertices.intersection(

KGC_NEIGHBORS[frozenset(v)])) for v in

remainingVertices]

4 maxDegree = max([len(templist) for v, templist in

tempNewLiveVertices])

5 maxVertices = [v for v, tempList in

tempNewLiveVertices if len(tempList) == maxDegree]

6 return maxVertices

Listing 1. The Greedy Algorithm

24

