
Pacific Institute for the

Mathematical Sciences

Exploring Boxicity: Graph Representations in Multidimensional
Spaces
Amna Adnan1, Matthew Barclay2, Marco Caoduro3,
Joshua Childs2, Will Evans3, and Tao Gaede2

1: University of Calgary, 2: University of Victoria, 3: The University of British Columbia

1. Introduction
For a graph G = (V, E), the boxicity of G, denoted by box(G), is the minimum dimension d such that G is the intersection graph of a family (Bv)v∈V of d-dimensional boxes. An axis-parallel
box in Rd is a Cartesian product I1 × I2 × · · · × Id, where Ii is an interval of the real line. Boxicity was first came about through F.S. Roberts and J.E. Cohen work on combinatorial
applications to biological sciences [5] [4]. It is a useful descriptor of interdependence for graphs representing intersecting elements in a multidimensional system.

2. Background and Methods

Boxicity is the k-dimensional extension of interval graphs. A box-intersection representation
of a graph G may be constructed by the intersection of interval graphs. This is described in
the following theorem.

Theorem 1 A graph G has boxicity at most k if and only if it can be represented as the
intersection graph of k interval graphs.

Depending on the graph, taking these intersections can be difficult - they are reductive, not
constructive, requiring a reasonable estimate of a graph’s boxicity. To avoid these challenges,
we may use DeMorgan’s laws to obtain a more constructive approach wherein we cover the
graph complement using complements of interval graphs, which we call co-interval graphs.
For any ordering σ of V (G), Gσ is a co-interval subgraph of G [2], constructed by itera-
tively intersecting the neighbourhoods of the vertices in order. Co-interval subgraphs will be
hereafter referred to as interval-order subgraphs.
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Definition 1 (Interval-Order Cover) Let G be a graph, and let F be a family of k

interval-order subgraphs of G. Then F is a k-interval-order cover of G if ∪k
i=1V (Hi) =

V (G) and ∪k
i=1E(Hi) = E(G), for Hi ∈ F.

The following lemma is used extensively to determine boxicity upper bounds.

Lemma 2 (Cozzens and Roberts [3], 1983) Let G = (V, E) be a graph, and let G be
its complement. Then box(G) ≤ k if and only if G has a k-interval-order cover.

Observe from Lemma 2 that to find the boxicity of a graph G, it is sufficient to find the
least number of interval-order subgraphs required to cover E(G). Following the techniques
of Caoduro and Sebő [2], every graph G has a class of maximal interval-order subgraphs that
may be used to minimally cover G. We define such maximal graphs as follows:

Definition 2 (Maximal Interval-Order Subgraphs (MIOS)) Let G = (V, E) be a
graph, and let σ be an ordering of V(G). We say that Gσ is inclusion-wise maximal if
and only if there does not exist an ordering τ of V (G) such that Gσ is a proper subgraph
of Gτ .

Following the example of previous literature (see for e.g. [1], [2]), we seek ways of character-
izing the maximal interval-order subgraphs of select graph classes.
If we can characterize (or better, enumerate) the maximal interval-order subgraphs of a graph,
then it becomes much easier to find a minimal covering of the graph’s complement. Without
such characterizations, we would have to try every possible interval-order subgraph to find a
potentially minimal covering.

3. Main Result
One of our main results was a polynomial-time algorithm that produces a family of ants
that can be used to compute the boxicity of the complement of a tree T . By this, we mean
that by finding a minimum ant-covering of trees in polynomial time, we were able to obtain
an algorithm to compute the boxicity of the complement of a tree.

To prove this, we characterized the maximal interval-order subgraphs of a trees, and then dis-
covered a polynomial-time algorithm for finding a minimal interval-order cover. The maximal
interval-order subgraphs for trees are a construction we define as ants.

Definition 3 (uv-ant) Let G = (V, E) be a graph and uv ∈ E. A uv-ant with respect to G
is the graph A having vertex-set V (A) = N(u) ∪ N(v) and the edge set E(A) = δ(u) ∪ δ(v).
We call the edge uv the body of the ant and the edges E(A) \ {uv} the legs of the ant.

Lemma 3 (Cozzens and Roberts [3], 1983) Let G be a graph, and let uv ∈ E(G).
Then the uv-ant is an interval-order subgraph..

Lemma 4 Let G be a subgraph of T . If G is a maximal interval-order subgraph of T , then
G is a uv-ant for some uv ∈ E(T ).

Now that we can characterize the maximal interval-order subgraphs for trees as ants, then
the problem of bounding the boxicity of a graph is reduced to finding a minimal covering
with maximal interval-order subgraphs, ants, of the complement of T, T .

Finding a Minimal Covering with Maximal Interval-Order Subgraphs, Ants, of
the Complement of T, T : Generally for a graph, G, the covering, ν(G), is at least the
packing, τ(G), i.e. τ(G) ≤ ν(G). The covering, ν(G), and packing, τ(G), are not necessarily
equal, but in trees they are. We define the ant-packing number and the ant-covering number
of a graph G by the following:

Definition (Ant-Packing Number): Let G be a graph. The ant-packing number of G,
denoted by αA(G), is the maximum number of pairwise edge-disjoint ants in G.
Definition (Ant-Covering Number): Let G be a graph. The ant-covering number of G,
denoted by τA(G), is the minimum number of ants needed to cover the edges of G.
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Relationship between the boxicity of the complement of T, box(T ), and the
ant-packing number, αA(G), and the ant-covering number, τA(G): For a tree T, the
boxicity of the complement of T, box(T ), is upper bounded by the ant-covering number,
τA(T ), and lower bounded by the ant-packing number, αA(T ), i.e. αA(T ) ≤ box(T ) ≤ τA(T ).

We will see that the aforementioned algorithm proves that for a tree, the ant-packing number
and the ant-covering number are equal: Theorem: Let T be a forest, then αA(T ) = τA(T ).
Now, because for a tree T , αA(T ) ≤ box(T ) ≤ τA(T ) and the algorithm proves that αA(T )
= τA(T ), we have box(T ) = αA(T ) = τA(T ). Therefore as a Corollary of the aforementioned
Theorem, the algorithm allows us to compute the boxicity of the complement of a tree,
box(T ), in polynomial-time.

Algorithm: If the graph G is a forest, then this algorithm is performed for each connected
component in parallel. Note: The algorithm makes mention of an "almost-leaf", which is
defined as a vertex that becomes a leaf after all leaves of the original tree T are removed.

1. Choose an arbitrary vertex, r, and root the tree, T , at r. For a connected component,
if the height, h, is at most 2, then for each depth 1 vertex, there will be an ant for
the covering and packing, therefore we can see that αA(T ) = τA(T ).

2. For the tree T , rooted at r, select all almost leaves furthest away from the root vertex.
3. Label each almost leaf, uh,i, where h is the height of the tree, and i is the almost-leaf

count for the tree T .
4. Choose a non-leaf neighbour of uh,i and label it vh,i. Subsequently, choose a neigh-

bour of uh,i which is a leaf and call it lh,i.
5. Use u and v to construct an u, v-ant.
6. We define a class C, C := C ∪ {ui, vi}, where the bodies of the ants used for covering

are stored; and a class P , P := P ∪ {ui, li}, where the bodies of the ants used for
packing are stored. For each almost-leaf, we get one packing ant and one covering
ant.

7. Now define Th−1 as Th minus the edges of the uh,i − vh,i ant.
8. Repeat this process.
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4. Other Results
1. A similar argument to the algorithm for the complements of trees was proved for the

boxicity of the complement of line graphs of trees.
2. We determined that, for the Kneser graph K(n, k), finding the maximal subgraphs in

the k = 3 case was much more complex than the k = 2 case, requiring new methods.
3. Investigation of the boxicity of the Mycielskian of cycles and complete graphs.

5. Future Directions
Given that trees are outer planar graphs, we can probe for a more general result: perhaps
there is a polynomial-time algorithm for finding the boxicity of complements of outerplanar
graphs, which is similar to our algorithm for the complements of trees?
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