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Project Overview

A 3-d lattice polygon model is developed to study models of 3-stranded RNA-DNA complexes

called R-loops. To develop the model we focus on the following aspects:

How to use a random sample of lattice tube polygons to model RNA-DNA geometry.

How to visualize the model geometry.

How to relate DNA base pairs to lattice edges.

We present progress made on each of these aspects.

What is an R-loop?

Figure 1. Schematic representation of an R-loop (blue: non-template DNA; red: template DNA; green: RNA

transcript; blue box: RNA. polymerase)

R-loops occur during the process of transcription; experiments indicate they can play either

destructive or regulatory roles in cellular processes. Thus, it is important to determine the factors

influencing R-loop formation and stability.

Transcription involves an enzyme, called RNA polymerase, acting on double-stranded DNA to

create a new RNA molecule using the template strand of the DNA. R-loops occur when the newly

formed RNA binds to the template DNA strand. This results in a 3-stranded RNA-DNA structure

consisting of an RNA-DNA complex along with the displaced non-template DNA strand.

Experiments indicate that R-loop formation is favoured when a G-rich RNA transcript is created

from the template DNA. DNA supercoiling also affects R-loop formation, with more negatively

supercoiled DNA promoting R-loop formation [1]. Hence both DNA sequence and DNA topology

affect R-loop formation.

Experimental studies of R-loops [1] for specific DNA sequences have yielded site-specific proba-

bilities for R-loop formation under different topological states of the DNA. Existing models [1, 2,

3] can be used to predict where R-loops are more likely to appear, but do not include detailed

representations of the R-loop geometry.

The goal of this work is to develop a 3-d lattice model of DNA-RNA complexes that incorporates

information from site-specific R-loop formation probabilities. Such a model will allow us to address

more detailed geometric and topological questions about R-loops.
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First Step 3-d Lattice Model

Figure 2. Portion of 2x1 lattice model of an R-loop in a tube: red: single-stranded RNA before and after R-loop;

blue/black: DNA/DNA before and after R-loop; green: single-stranded DNA within an R-loop; purple/black:

RNA/DNA within an R-loop.

Using a random sample of polygons from a lattice tube to model RNA-DNA geometry:

Samples of random polygons with fixed span m (the maximum extent in the x-direction) were
available from [4]. Polygons were divided into two walks by deleting an edge at the x = 0 plane
and an edge at the x = m plane. One walk is considered double-stranded and the other single-

stranded.

Choosing locations for the start and end of an R-loop:

An R-loop beginning and ending requires the two walks to be close. As a first model for this, we

assume this can happen at 2-sections (half integer x-planes that contain only two edges of the

polygon) where the edges are one edge apart in the y or z direction, called 2*-sections.

Visualization

Examining a 3-d model of a polygon of span 50 in a 2x1 tube:

We split a span m polygon into two walks by removing one edge in each of its first (x = 0) and last

(x = m) planes. The double-stranded and single-stranded pieces of the RNA-DNA complex are

represented by these two walks. For example, the blue walk could represent a double-stranded

molecule and the red one could represent a single-stranded molecule.

In the Figure below, the colours change at each 2*-section. For this model, we are assuming that

these are possible places where an R-loop could start or end.

Relating DNA Base Pairs and Lattice Edges via Persistence Length

Persistence length is a geometric property which quantifies the bending stiffness of a polymer. The

persistence length of double-stranded DNA and single-stranded DNA/RNA have been measured

experimentally; if we can estimate the persistence length for walks in our model, we can use this

to approximate the number of DNA base pairs in a walk.

Figure 3. A position dependent correlation at position k is given by c(k) = ~ak · ~Re, where ~ak is the direction of the kth

edge and ~Re is the end-to-end vector from the first to last vertex in the walk. Average values of this correlation can

be used to measure persistence length [5].

Given an independent sample of length-n walks (n = m = polygon span) from our model, we

computed the average value of c(k) for k = 1, . . . , n. We then plotted these average c(k) values
as a function of chain position k/n. The plateau of this plot serves as an estimate for model

persistence length [5].

Figure 4. LEFT: Persistence length of double-stranded DNA is 50nm ≈ 150 base pairs (bp). At walk span = 250, the

persistence length is 42 lattice edges. 150 / 42 = 3.57 bp per edge. RIGHT: Persistence length (in lattice edges)

grows linearly with walk length = polygon span.

FutureWork

Future directions will begin with finishing the 3-d lattice model and assigning probabilities to each

possible model configuration. From this, we can get average geometric and topological properties

of the RNA-DNA complexes. For this purpose, we can upload the lattice walks and polygons from

the model into Knotplot [6] and measure entanglement complexity using the knotplot toolbox.
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