
Pacific Institute for the

Mathematical Sciences

PACIFIC INSTITUTE FOR THE MATHEMATICAL
SCIENCES VIRTUAL EXPERIMENTAL

MATHEMATICS LAB (PIMS VXML) FINAL REPORT:
COMBINATORICS AND KNOT THEORY FOR

RNA-DNA COMPLEXES II

FACULTY MENTORS: MARGHERITA MARIA FERRARI1; CHRIS
SOTEROS2. POSTDOC MENTOR: MATTHEW SCHMIRLER2. TEAM
MEMBERS: SHRUTI KAREN KAUR2; OLIVIA NUMEDAHL2; MINGZE

SUN3, BRYNN WILLIAMS4

1. Introduction

The nucleic acids DNA and RNA contain the genetic code of life.
This is encoded in each molecule via their nucleotide sequences. DNA
and RNA naturally interact with each other during cellular processes
such as transcription. These processes modify the geometry and topol-
ogy of DNA and RNA, thus sometimes yielding multi-stranded struc-
tures. An R-loop is a 3-stranded structure formed during transcription
and it is composed of an RNA-DNA complex and another single strand
of DNA. Experimental studies indicate that R-loops can play either de-
structive or regulatory roles in cellular processes; see, for instance, [1].
Thus, it is important to determine the factors influencing R-loop for-
mation and stability. It is known that both DNA sequence and geome-
try/topology affect R-loop formation [1, 2, 3]; however, little is known
about their geometric and topological entanglement properties.

In order to begin to model the geometric/topological features of R-
loops, in this work we introduce and start to build a simplified 3-d
lattice polymer model.

To explain our model further, we begin by giving more background
about R-loops, some existing models, and a review of some relevant
definitions and theory. We then highlight questions to be addressed in
developing the model. Following this, we present the progress made
towards developing the 3-d model. Finally, we discuss conclusions and
possible future work.

Date: Academic Year 2023–24.
1: University of Manitoba; 2: University of Saskatchewan; 3: University of

Alberta; 4: University of Victoria
1

2. Background and the Initial Problem

Transcription involves an enzyme, called RNA polymerase, acting
on double-stranded DNA to create a new RNA molecule using the
template strand of the DNA. R-loops are RNA-DNA structures that
can occur through transcription when the newly formed RNA binds
to the template DNA strand. This results in a 3-stranded RNA-DNA
structure consisting of an RNA-DNA complex along with the displaced
non-template DNA strand.

Based on the ‘thread back model’, the newly formed RNA threads
back into the double-stranded DNA behind the transcription machinery
(the location of the RNA polymerase) to form an R-loop [4, 5]. Figure
1 depicts an R-loop formed during transcription.

Figure 1. Schematic representation of an R-loop (blue:
non-template DNA; red: template DNA; green: RNA
transcript; blue box: RNA polymerase). Diagram
Credit: S. Kaur.

There is evidence that the formation of an R-loop is favored when a
G-rich RNA transcript is created from the template DNA [1, 6]. There
is also evidence that the amount of supercoiling in the DNA affects
R-loop formation, with more negatively supercoiled DNA promoting
R-loop formation [2]. Hence both DNA sequence and DNA topology
affect R-loop formation.

Experimental studies of R-loops [2] for specific DNA sequences have
yielded site-specific probabilities for R-loop formation under different
topological states of the DNA. Existing models [2, 7, 8, 9, 10] can be
used to predict where R-loops are more likely to appear in a given DNA
sequence; however, these models do not include detailed representations
of the R-loop geometry.

The goal of this work is to develop a 3-d lattice polymer model of
RNA-DNA structures that incorporates information from site-specific
R-loop formation probabilities. Such a model will allow us to address
more detailed geometric and topological questions about R-loops.

2

Towards developing the model, we next present further important
background information.

2.1. Lattice Models of Polymers in Tubes. A polymer is consid-
ered to be any large molecule that is made of repeated molecular units
called monomers. Thus DNA and RNA can be thought of as polymers
and indeed statistical mechanics models of polymers have proved use-
ful for modelling the average conformational (topological/geometrical)
properties of DNA in solution [11]. Such models include lattice models
such as self-avoiding walk (SAW) and polygon (SAP) models.

For polymers under confinement conditions, one standard lattice
model considers walks or polygons confined to a tubular sublattice of
the simple cubic lattice [12]. In this case, the polymer is represented
by a set of vertices in Z3 that are joined by unit edges. For tubular
confinement, the vertices are bounded in the y and z directions, with
free growth allowed in the positive x-direction. For example, for the
(L,M)-tube, the vertex coordinates must satisfy: x > 0, 0 < y ≤ L,
0 < z ≤ M . In the case of M = 0, the tube is 2-dimensional and
called a slit. A mathematical advantage of lattice tube models is that
they can often be studied exactly using transfer matrix and/or Markov
chain methods.

Last year, the team working on this project [13] studied two first-step
Markov Chain models. One model was a model for R-loop formation
based on the formal grammar model of [9, 10] and the other was a sim-
ple 2-d lattice model for R-loop geometry. For the lattice model, the R-
loop was represented by two walks in a slit of height 2 ((2,0)-tube); the
walks were obtained by dividing a polygon into two walks which cross
the slit. One walk was used to represent the double-stranded RNA-
DNA complex and the other represented the displaced single-stranded
DNA. Since a double-stranded molecule is much less flexible than a
single-stranded one, the probability of forming a bend (a right angle)
was taken to be different for each of the two walks. Work on this project
was continued over the summer [14] to combine the two Markov chain
models together. This allowed the RNA-DNA complex to be modelled
with different bend probabilities in the two walks before, during and
after an R-loop. Properties such as average R-loop length and aver-
age bend counts as well as the conditional probability of being in an
R-loop at a given step in a fixed-length chain were studied and com-
pared to the experimental results from [2]. Although this Markov chain
model was very simplified, the model could take into account different
flexibilities between double-stranded and single-stranded polymers and

3

could incorporate different transition probabilities arising from the for-
mal grammar model. However, the Markov chain model assumed that
the transition probabilities were time-homogeneous and hence not site-
specific. Comparing the model to the results from [2] made it clear
that site-specific transition probabilities are needed to reproduce the
experimental results. Also, the 2-d nature of the model made it impos-
sible to study entanglements and supercoiling, which are known to be
relevant to R-loop formation.

To address the short-comings of the 2-d lattice model, the goal of this
work is to develop a 3-d lattice model that can take into account the
site-specific probabilities for being in an R-loop that are available from
experiments. Important ingredients for such a model include choosing:
the lattice structures used to model the RNA and DNA geometry; the
number of nucleotides that correspond to a lattice edge; a way to rep-
resent different polymer flexibilities; and a way to assign probabilities
to different lattice structures.

3-d polygons in small lattice tubes have already been studied [15]
and data sets generated from that study have been made available to
us. Thus a natural first step is to use the available data to develop a
3-d model and answer the following questions.

Initial Question: How do we use a random sample of lattice tube
polygons to model RNA-DNA geometry?

Sub-question 1: Howmany nucleotides correspond to a lattice edge?
Sub-question 2 How do we incorporate different flexibilities be-

tween two parts?
Sub-question 3: How do we assign probabilities to different RNA-

DNA configurations?
In order to discuss sub-question 1, we review some relevant back-

ground next.

2.2. Measuring Flexibility. The nature of the monomer units mak-
ing up a polymer affect the flexibility (or stiffness) of the polymer. One
way to measure a polymer’s flexibility experimentally is via a geometric
quantity called persistence length. For DNA, roughly speaking, after
two persistence lengths the correlation between starting and ending
directions of the DNA will be negligible [16].

Double-stranded DNA (dsDNA) is among the stiffest of known poly-
mers with a persistence length of �50 nm (150 bp) in 0.1M aqueous
NaCl [17]. Based on previous experiments, the persistence length of
dsDNA is significantly greater than that of single-stranded DNA (ss-
DNA), 1.48 nm (2 bases) [18], and single-stranded RNA (ssRNA), 1.0
nm (1.5 bases) [19].

4

Persistence length provides one way to address sub-question 1 (how
many nucleotides or base pairs correspond to a lattice edge?). For
example, if the persistence length for a lattice polymer model is known
to be ` lattice edges, then to represent dsDNA with persistence length
of 150 bp, 1 edge corresponds to 150/` base pairs. On the other hand,
to model ssRNA/ssDNA, 1 edge would correspond to ≈ 2/` base pairs.
For either case, it is of interest to estimate the persistence length for a
lattice model.

The following description is based on the presentation in [20]. To
estimate persistence length we use a position-dependent correlation
length introduced by Flory [21]. Given a chain consisting of N + 1
monomers with position vectors {~r0, ~r1, . . . , ~rN} connected by the bonds
{~ai|~ai = ~ri − ~ri ∀ i = 1, . . . , N}, we define the orientational correlation
locally for each bond k along the chain by

c(k) :=
~ak · ~Re

||~ak||2
, (1)

where ~Re = ~rN − ~r0 and ||~ak|| denotes the length of the vector ~ak. For
chains (walks) on the simple cubic lattice, any edge vector has length
1 and the expression in Equation 1 simplifies to c(k) = ~ak · ~Re.

Note that the definition of c(k) in Equation 1 is for a single chain. We
are interested in estimating the expected value of c(k) over all chains at
equilibrium (denoted by E [c(k)]). At equilibrium, this expected value
is related to a positional persistence length [22]:

E [c(k)] =
lp(k)

lb
, (2)

where lb is the length of the bonds between monomers, and lp(k) is
the persistence length at chain position k. In the simple cubic lattice,
lb = ||~ak|| = 1, thus Equation 2 simplifies to lp(k) = E [c(k)]. It is
expected that lp(k) reaches a plateau in the chain interior; this plateau
can be used to estimate the persistence length in the model for a fixed
chain length N [23]. Since we know the experimental values for the
number of bases (nucleotides) in a persistence length of dsDNA, ssDNA
and ssRNA, as discussed above, we can divide this quantity by the
number of lattice edges per persistence length in order to estimate the
number of bases per lattice edge in our model.

3. New directions

To answer our initial questions, for our first step in developing a
3-d lattice model of R-loops in a tube, we used the random polygons

5

with fixed span m (the maximum extent in the x-direction) available
from [15]. Each polygon is divided into two walks by deleting an edge
in the x = 0 plane and an edge in the x = m plane. One walk is
considered double-stranded and the other single-stranded (see Figure
2). For now these choices have been made arbitrarily but the goal is
to develop systematic ways to choose which edges to delete and which
walk represents what. We were able to plot these polygons in 3-d, this
is described further in Section 4.1. We then take these polygons and
use them to model R-loops but we are left with some more questions:

Sub-question 4: How do we decide which edges in the x = 0 and
x = m plane to delete?

Sub-question 5: How do we decide which walk is considered double-
stranded and which is single-stranded?

Sub-question 6: How do we decide which geometries are suitable
for the start or end of an R-loop?

Figure 2. Portion of lattice model of an R-loop in a
(2, 1)-tube: single-stranded RNA before and after R-loop
(red); DNA/DNA before and after R-loop (blue/black);
single-stranded DNA during R-loop (green); RNA/DNA
during R-loop (purple/black)

Answers to sub-questions 4 and 5 will be left to future work; we
discuss one way to address sub-question 6 next.

Using what is known about R-loop formation, we can put constraints
on where they would occur in a polygon. We assume that the R-loop
beginning or end requires the two walks of the polygon to be close so
that the RNA can easily invade. One of the simplest situations where
this could happen is at a 2-section. A 2-section is a half integer x-plane
that intersects only two edges of the polygon. At a 2-section, we only
have two strands thus we know for certain that one is double-stranded
and the other is single-stranded, so we assume that an R-loop will start

6

and end at two different 2-sections. In Figure 2 the black dotted lines
represent the 2-sections. As we can see there are only 2 edges that
intersect the x = 36.5 plane and the x = 33.5 plane respectively. To
make sure that the two walks are close enough in these 2-sections, we
assume further that only the 2-sections where the two edges are only
one edge apart in either the y or z direction are suitable for the start
or end of an R-loop. We will call these special 2-sections, 2*-sections.
This leads us to some new questions:

Sub-question 7: How can we find 2-sections and 2*-sections in this
3-d model?

Sub-question 8: How do we visualize the model geometry using
these 2-sections?

Sub-question 9: How do we decide which 2*-sections are the start
and end of the R-loop?

4. Progress

In this section we discuss the work done towards answering the initial
question and some of the sub-questions.

The polygons made available to us via [15] were given in files in
UofS format. A file of this format begins on line 1 with “UofS”, then
on line 2 a sequence of coordinates for a single vertex, xyz, denoting
the beginning of the polygon. On each subsequent line there will be a
number from 1 to 6; this indicates what lattice direction the next edge
is. A 1 indicates a step in the +x direction, 2 is −x, 3 is +y, 4 is −y,
5 is +z, and 6 is −z. At the end of all the directions (once you have
come back to the starting vertex), there is a -111 indicating the end
of the polygon. There can be multiple polygons in a file, in that case
after the -111 would come a new vertex xyz denoting the beginning of
the new polygon. The file will end with -999 indicating there are no
more polygons stored in this file.

4.1. Progress on a 3-d Lattice Model: Sub-questions 7,8. Part
of the progress on the 3-d model involved developing the following
computer programs:

• B. Williams' Python Code 1: This code, written in Python
3, reads in a file of UofS format and translates the data into
vertices. It gives a list of polygons with each polygon having
three lists with their x, y, and z coordinates respectively, such
that poly[0][0] gives the list of the first polygon’s x coor-
dinates, poly[1][1] gives the list of the second polygon’s y

7

coordinates, and poly[0][2][0] gives the first polygon’s ini-
tial z coordinate. The input polygons used for this section were
generated from [11].

Algorithm 1 Translating UofS format to Vertices
1: Input: UofS file
2: Open UofS file and readlines
3: Intg = empty list, poly = empty list, polys = empty list, x = empty list, y = empty list, z =

empty list, pos = empty list, polygons = empty list
4: for every line in file do
5: if the length of the line is >= 5 then
6: remove ’\n’ and ’ ’
7: for every index in the length of the line do
8: append each individually as an integer to Intg
9: end for
10: end if
11: if the length of the line is 3 then
12: remove ’\n’ and append as an integer to Intg
13: end if
14: if the line is ’−111\n’ then
15: append ’end’ to Intg
16: end if
17: if the line is ’−999\n’ then
18: Break loop
19: end if
20: end for
21: for every value in Intg do
22: if the value is ’end’ then
23: append poly to polys
24: else
25: append value to poly
26: end if
27: end for
28: Append final poly to polys and remove extra empty list from polys
29: for every index i of the number of lists in the list of polys do
30: for every index n of the length of the polyon do
31: if the index n is 0, 1, and 2 then
32: append polys[i][n] to x, y, and z respectively
33: end if
34: if the index n is 3 or greater then
35: depending on the value polys[i][n] append the corresponding change to the last x,

y, or z coordinate in their respective lists and append the last x, y and z coordinate as it was
before if that coordinate didn’t change

36: end if
37: end for
38: Append the lists of the x, y, and z coordinates to pos and then append pos to polygons
39: end for
40: Output: list of 3 lists each containing the x, y, z coordinates respectively for the vertices of

the polygon

• O. Numedahl's Python Code 1: This code, written in Python
3, takes an input polygon and looks at the x coordinates x = i.
As you go along a polygon’s edges, when x changes to x = i+∆
where ∆ ∈ {−1, 1}, then the half integer plane being crossed

8

by this edge becomes x = i+∆/2. The code goes through the
entire polygon and records every time any half integer plane is
crossed. Then it keeps the ones that only have 2 edges through
them, thus the 2-sections. It looks at all these 2-sections and
only picks out the ones which are one edge apart in either the
y coordinate or the z coordinate, thus the 2*-sections. It then
records which half integer planes contain these 2*-sections and
which edges are going through them.

Algorithm 2 Finding 2*-sections
1: Input: list of 3 lists each containing the x, y, z coordinates respectively for the vertices of the

polygon
2: x0 = previous x coordinate and x1 = current x coordinate
3: for every vertex in the polygon do
4: if x coordinate changes then
5: Record half integer plane |x1 − x0|/2 as having +1 edge going through
6: Record coordinates of the current and previous vertices
7: end if
8: end for
9: for Every half integer plane in the span of the polygon do
10: if plane has only 2 edges going through then
11: if 2 edges crossing the plane are one edge apart then
12: Add this plane to a list 2*-sections
13: end if
14: end if
15: end for
16: Output: 2*-sections

• B. Williams' Python Code 2: This code, written in Python
3, takes the list of polygons from the first code and creates a
dataframe of the first polygon in the list, such that there are
four columns one for the x, y, and z coordinates respectively and
another listing their position in the polygon. This code then
creates an empty 3-d figure and two traces are added, one for
each walk with the edge connecting them removed. This gives
us Figure 3. Then using the results of the code above we create
two lists of the edges that pass through the 2-sections, one for
the first walk and one for the second, this gives the positions
in the polygon where the 2-sections occur. We can filter these
two lists and find ones that only have one edge apart in either
the y or z direction. Then we use the fourth column to select
the vertices on either side of a 2-section. Using this we can
add traces for each 2-section that are only one edge apart. The
trace starts at the first 2-section and ends at the next closest
2-section, this is graphed using a for-loop. This graph is shown
in Figure 4. All of the code is done so that it can graph the
same for any given polygon of this format.

9

Algorithm 3 Graphing basic 3-d Model
1: Input: list of 3 lists each containing the x, y, z coordinates respectively for the vertices of the

polygon
2: choose one polygon and zip the x, y, and z coordinates and a list of numbers 1 to the length

of the polygon removing the last coordinates, turn this into a list and assign it to a variable
ver

3: create dataframe of ver with columns x, y, z, and w call it df
4: create an empty plotly express 3-d line figure call it fig
5: add scatter 3-d to fig with x = df[df[’w’]<=walklength][’x’] for x, y, and z repectively setting

mode = ’lines’ and line = dict(width = 4, color = ’blue’)
6: add another scatter 3-d to fig with x = df[df[’w’]>walklength][’x’] for x, y, and z repectively

setting mode = ’lines’ and line = dict(width = 4, color = ’red’)
7: update layout of fig to have scene = dict(aspectmode = ’data’)
8: Output: Figure 3

Algorithm 4 Graphing 2*-sections in 3-d
1: Input: fig from algorithm 3
2: create a list of the edges found in the output of algorithm 2 from the first vertex to the end of

the walk call it walk1
3: create another list of edges found from algorithm 2 from the end of the walk to the last vertex

call it walk2
4: for index i in the range 0 to length of walk1 do
5: if the index i is divisible by 2 then
6: m=(df[’w’]>=walk1[i]) and (df[’w’]<=walk1[i+1]+1)
7: add scatter 3-d for x=df[m][’x’] for x, y, and z respectively setting mode = ’lines’ and

line = dict(width = 4, color = ’violet’)
8: m=(df[’w’]>=walk2[i+1]) and (df[’w’]<=walk2[i]+1)
9: add scatter 3-d for x=df[m][’x’] for x, y, and z respectively setting mode = ’lines’ and

line = dict(width = 4, color = ’mediumseagreen’)
10: end if
11: end for
12: Output: Figure 4

4.1.1. Results: Regarding Sub-question 7: we found from O. Numedahl’s
Code 1 that by looking at only the x coordinate we can find the 2-
sections and by looking at the y and z coordinates we can easily find
the 2-sections that are one edge apart, the 2*-sections. O. Numedahl’s
Code 1 was only used on a few polygons of span 50 for the results
to be used to visualize via B. Williams’ Code 2. It can be used on
polygons of any span and we could use this to find the average number
of 2*-sections for polygons of a given span. Given the theory [24, The-
orem 2.6.2] we would expect to find an αT > 0 such that the number
of 2*-sections per span for a span m polygon goes to αT as m → ∞,
that is, limm→∞E[#2 ∗ −sections]/m = αT , where E[#2 ∗ −sections]
is the expected number of 2*-sections in a random span m polygon in
a given tube T .

10

Results for Sub-question 8: B. Williams’ Code 1 was tested for poly-
gons up to span 250; it should work for polygons of any span. Al-
gorithm 3 and 4 were written to take as input any polygon with any
given span. The two figures below illustrate the output from these two
algorithms for one specific polygon with span 50 in the (2, 1)-tube.

Figure 3. Output from Algorithm 3 with input a span
50 polygon in the (2, 1)-tube: the output shows two walks
with the same span; one walk (red, say) can be used to
model a single-stranded molecule and the other a double-
stranded molecule (blue).

Figure 4. Output from Algorithm 4 with input a span
50 polygon in the (2, 1)-tube: the output is two walks
where colours on the walks change at 2*-sections. One
assignment of colours could be as follows: single-stranded
RNA (red); double-stranded DNA (blue); RNA/DNA
during R-loop (green); single-stranded DNA during R-
loop (purple).

4.2. Progress on Persistence Length: Sub-question 1. For the
purpose of estimating persistence length, we used (2, 1)-tube polygon
data consisting of 10,000 independently sampled polygons for each span
m = 50, 100, 150, 200, 250. Given a span m, the 10,000 independent
samples were generated with each polygon of span m being equally
likely. All sample polygon files were in the UofS file format.

• M. Sun's Python Code 1: Given a UofS format file contain-
ing multiple polygons with a specific span m, M. Sun wrote an
algorithm to calculate the persistence length using Python 3,
shown in Algorithm 5. The first step is to take the first m + 1
vertices in the polygon to get a walk of length m from the poly-
gon. The reason for this choice of walk length stems from the

11

fact that our RNA-DNA model involves dividing a spanm poly-
gon into two walks, each of which starts in the plane x = 0 and
ends in the plane x = m. Choosing walk length m for the per-
sistence length calculation ensures that the chosen walk exists
and is not long enough to turn back after reaching the x = m
plane.

Figure 5 may help with understanding the algorithm. For
example, given a lattice walk with 9 vertices i.e. walklength =
8, ~Re is defined as an end-to-end vector. We aim to get the
dot product of ~Re and ~ai where i is in range [1, walklength].
Repeat this process for every walk in the sample, and compute
the average of these dot products to get a position dependent
persistence length.

Figure 5. For a given walk, the positional correlation
c(k) is equal to the dot product of the kth edge vector,
~ak, with the end-to-end vector, ~Re.

Algorithm 5 Computing Persistence Length
1: Input: Arrays containing polygon vertices and polygon-span
2: walklength = polygon-span and initialize array dotprods as 0
3: for each polygon p do
4: Extract the first (walklength + 1) vertices from p
5: Compute ~Re as p[-1] - p[0]
6: for j = 1 to walklength do
7: Compute the ith edge direction as p[i+1] - p[i] (edgedir)
8: Compute the dot product of ~Re and edgedir (dotprod)
9: Update dotprods[i] += dotprod
10: end for
11: end for
12: for i = 1 to walklength do
13: Compute the average of dotprods[i] over numpolys
14: end for
15: Output dotprods

12

4.2.1. Results: Regarding Sub-question 1:
Using Algorithm 5, we obtained graphs of persistence length with

respect to the chain position. Using span 250 as an example, we esti-
mated the peak of the curve that covers 95% points, shown in Figure
6. Repeating the process for other spans yielded Figure 7, which shows
an increase in persistence length with larger spans. For the given DNA
polygons with span 250, the estimated persistence length is approxi-
mately 42 lattice edges. If we assume the persistence length of DNA
is 150 bp, then there are approximately 150/42 = 3.57 base pairs per
edge.

The lattice persistence length calculated here is for the distribution
of lattice tube polygons where each polygon of a given span is equally
likely. For a distribution where polygons are weighted according to
the number of bends (right angles), the measured persistence length is
expected to, for example, decrease if bends are favoured. This suggests
a way to impose different flexibilities on different parts of the polygon
and thus address sub-question 2.

Figure 6. For walk-length m = 250, estimates for
E[c(k)] plotted versus k/m. The red line indicates the
plateau which is used to estimate persistence length.
Black horizontal lines indicate an estimated 95% con-
fidence interval for the persistence length.

13

Figure 7. Estimates for persistence length for length-m
walks in the (2, 1)-tube, m = 50, 100, 150, 200, 250. Error
bars indicate an estimated 95% confidence interval

5. Conclusions and Future directions

In summary, we made a first step towards developing a 3-d lattice
tube model for studying the properties of R-loops in 3-d.

Future directions will begin with completing an answer to our initial
question, this will include answering sub-questions 2-5. It would start
with finishing the 3-d model and assigning probabilities to each possible
model configuration. From this, we can get average geometric and
topological properties of the RNA-DNA complexes. For this purpose,
we can upload the lattice walks and polygons from the model into
Knotplot [25] and measure entanglement complexity using the knotplot
toolbox.

Acknowledgments

The team acknowledges helpful discussions with M. Vazquez and J.
Lusk. We also acknowledge the usefulness of the CoCalc account pro-
vided by PIMS and Overleaf accounts provided by MMF and CES.
CES acknowledges the support of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) [funding reference number
RGPIN-2020-06339].

14

References
[1] Y. A. Hegazy, C. M. Fernando, and E. J. Tran. “The balancing act of

R-loop biology: The good, the bad, and the ugly”. Journal of Biological
Chemistry 295.4 (2020), pp. 905–913.

[2] R. Stolz, S. Sulthana, S. R. Hartono, M. Malig, C. J. Benham, and
F. Chédin. “Interplay between DNA sequence and negative superhe-
licity drives R-loop structures”. Proceedings of the National Academy
of Sciences 116.13 (2019), pp. 6260–6269.

[3] F. Chédin and C. J. Benham. “Emerging roles for R-loop structures in
the management of topological stress”. Journal of Biological Chemistry
295.14 (2020), pp. 4684–4695.

[4] D. Roy, K. Yu, and M. R. Lieber. “Mechanism of R-loop formation
at immunoglobulin class switch sequences”. Molecular and Cellular
Biology 28.1 (2008), pp. 50–60.

[5] B. P. Belotserkovskii, S. Tornaletti, A. D. D’Souza, and P. C.
Hanawalt. “R-loop generation during transcription: Formation, pro-
cessing and cellular outcomes”. DNA repair 71 (2018), pp. 69–81.

[6] D. Roy and M. R. Lieber. “G clustering is important for the initiation
of transcription-induced R-loops in vitro, whereas high G density with-
out clustering is sufficient thereafter”. Molecular and Cellular Biology
29.11 (2009), pp. 3124–3133.

[7] T. Wongsurawat, P. Jenjaroenpun, C. K. Kwoh, and V. Kuznetsov.
“Quantitative model of R-loop forming structures reveals a novel level
of RNA–DNA interactome complexity”. Nucleic Acids Research 40.2
(2012), e16–e16.

[8] P. Jenjaroenpun, T. Wongsurawat, S. P. Yenamandra, and V. A.
Kuznetsov. “QmRLFS-finder: a model, web server and stand-alone tool
for prediction and analysis of R-loop forming sequences”. Nucleic Acids
Research 43.W1 (2015), W527–W534.

[9] N. Jonoska, N. Obatake, S. Poznanović, C. Price, M. Riehl, and M.
Vazquez. “Modeling RNA:DNA Hybrids with Formal Grammars”. Us-
ing Mathematics to Understand Biological Complexity: From Cells to
Populations. Ed. by R. Segal, B. Shtylla, and S. Sindi. Cham: Springer
International Publishing, 2021, pp. 35–54. doi: 10.1007/978-3-030-
57129-0_3.

[10] M. M. Ferrari et al. “The R-loop Grammar predicts R-loop formation
under different topological constraints”. In preparation (2024).

[11] E. Orlandini and S. G. Whittington. “Statistical topology of closed
curves: Some applications in polymer physics”. Reviews of Modern
Physics 79 (2007).

[12] D. J. Klein. “Asymptotic distributions for self-avoiding walks con-
strained to strips, cylinders, and tubes”. Journal of Statistical Physics
23.5 (1980).

15

[13] C. Soteros, M. M. Ferrari, M. Schmirler, M. Sun, M.
Shvets, and J. Li. “PIMS - VXML Project 2022-2023: Com-
binatorics and Knot Theory for RNA-DNA Complexes”.
https://vxml.pims.math.ca/projects/2022-2023/combinatorics/.

[14] O. Numedahl, C. Soteros, M. Schmirler, and M. M. Ferrari. “Lat-
tice Models of RNA-DNA R-loop Complexes”. https://harvest.us-
ask.ca/items/10faea2d-14fa-4e85-aa2b-9e04daf562b4/.

[15] J. W. Eng. “A transfer matrix approach to studying the entanglement
complexity of self-avoiding polygons in lattice tubes”. PhD thesis. Uni-
versity of Saskatchewan, 2020.

[16] A. D. Bates and A. Maxwell. DNA Topology. Second. New York: Ox-
ford University Press, 2005.

[17] G. S. Manning. “The persistence length of DNA is reached from the
persistence length of its null isomer through an internal electrostatic
stretching force”. Biophysical Journal 91.10 (2006), pp. 3607–3616.
doi: 10.1529/biophysj.106.089029.

[18] B. Tinland, A. Pluen, J. Sturm, and G. Weill. “Persistence length of
single-stranded DNA”. Macromolecules 30.19 (1997), pp. 5763–5765.

[19] K. Hayashi et al. “Influence of RNA strand rigidity on polyion complex
formation with block catiomers”. Macromolecular Rapid Communica-
tions 37.6 (2016), pp. 486–493.

[20] M. Schmirler. “Modelling DNA Knotting Using Interacting Lat-
tice Self-Avoiding Polygon Models”. PhD thesis. University of
Saskatchewan, 2022.

[21] P. J. Flory. “Statistical thermodynamics of semi-flexible chain
molecules”. Proc Roy. Soc. A 234 (1956).

[22] P. J. Flory. Statistical Mechanics of Chain Molecules. New York: In-
terscience, 1969.

[23] H. P. Hsu, W. Paul, and K. Binder. “Standard Definitions of Persis-
tence Length Do Not Describe the Local “Intrinsic” Stiffness of Real
Polymer Chains”. Macromolecules 43 (2010).

[24] M. Atapour. “Topological entanglement complexity of systems of poly-
gons and walks in tubes”. PhD thesis. University of Saskatchewan,
2008.

[25] R. Scharein. “The KnotPlot Site”. http://knotplot.com.

16

