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Abstract

Microbiome data are extremely important for understanding the composition of microbial commu‐
nities, leading to impactful applications in studying diseases in both humans and plants. Recently,
16S rRNA gene sequencing has become a popular method to perform microbial community stud‐
ies. Despite the popularity of this method, there are challenges in analyzing 16S rRNA gene
sequence data. Although a large body of literature develops different data‐generating models,
more work must be done on developing a 16S count data generator. Our project proposes a
novel data generator that makes use of phylogenetic tree distances. This generator is applied to
compare the four recent methods via a comprehensive simulation study.

Introduction

Challenges in Analyzing 16S rRNA Gene Sequence Data
Despite the widespread use of 16S rRNA gene sequencing data, a key tool in microbiome
research[1]. In this project, challenging issues are present due to the limitations of the sequencing
technique: composition, high dimensionality, and an excess amount of zeros (zero‐inflation), and
we want to address the problems by creating a novel data generator. We propose a data gen‐
erator that considers phylogenetic tree distances, mimics real‐world data, and allows advanced
statistical methods to be systematically compared to one another to gain a better understanding
of the complicated microbial data.

Phylogenetic Tree
Phylogenetic trees reflect ancestral information between species, which eventually leads to a
common ancestor[2]. These trees are based on genetic information, with each stem representing
a unique yet distinct evolutionary path[3]. A plausible assumption is that the abundances of two
closely related species (taxa in OTU data) will be similar.

Recent Four Method For Handling zero

Bayesian‐Multiplicative replacement method
Martín‐Fernández et al.[4] proposed a Bayesian‐multiplicative treatment in 2015. This
method treat all zero as sampling zeros that means non of zeros are biological zeros,and this
technique do not using the information of phylogenetic tree. By using Bayesian‐multiplicative
method and mutltinomail distribution to adjustment of non‐zero values.
MbImpute
The mbImpute method is proposed by Jiang et al [5] in 2021. Firstly, mbImpute distinguish all
zero values into two types that are biological zero and sampling zero. Second, by
borrorrowing information from similar taxa and using information from phylogenetic tree to
imputed all sampling zero values in dataset.
Zero inflated probabilistic PCA model
The ZIPPCA method was proposed by Zeng[6] et al in 2022, the ZIPPCA method processes
multivariate abundance data directly. Instead of converting raw abundance data into
compositions or relative abundances, this method employs an empirical Bayes approach to
infer microbial compositions
Zero inflated Dirichlet tree multinomial model
Zhou et al[3]. proposed a Zero‐Inflated Dirichlet Tree Multinomial distribution to handle
zero‐inflated microbiome data in 2021. ZIDTM is adept at handling data sparsity,
compositionality, and high dimensionality by setting a multivariate distribution. A notable
challenge introduced is the multiple possible orderings of child nodes for each taxa. To
address this, different ZIDM models are applied to every possible outcome to identify the
best fitting model.

Simulation Data Generation

Notations:

N: Number of the sampling size, N = 98
K: Number of the taxon, K = 62
i: The i‐th sample, i = 1, 2,..., N
j: The j‐th taxon, j = 1, 2,..., K
πij: Relative abundance for taxa j in sample i

Ni =
∑K

j=1 Yij: Total OTU counts

δj =

{
1, if taxon j does not exist.
0, otherwise.

Parameters in Simulation:
In the simulation study, there are three different
proportions of biological zero scenarios. The α,
ρ, σ, and θ are the four parameters for
generating true abundance. The first scenario α
is 5, the second is 15, and the third one is 50.
The mean vector of Multinomial distribution, θ
follows normal distribution with vary mean are
1 and 4, and standard deviation is 1; the
evolutionary rate, ρ is 1; the σ is 2

P (δj = 1) = 1 − exp(−djK/α), j = 1, ..., K

δij ∼ Bernoulli(pj)

if δj = 1 : πij = 0
if δj = 0 : Ui ∼ MV N(θi, Σ)

πij1 =
exp(Uij1)

1 +
∑L−1

l=1 exp(Uijl
)

...

πijL−1 =
exp(UijL−1)

1 +
∑L−1

l=1 exp(Uijl
)

πiK = 1
1 +

∑L−1
l=1 exp(Uijl

)
Yi|πi ∼ Multinomial(πi, Ni)

Note: The variance‐covariance matrix
Σlm = σ2 exp{−2ρlmDlm} [7], and the mean θ
is for different taxa in Multinomial distribution.
By the variance‐covariance, the phylogenetic
tree distances denotes as Dlm between taxon
l and m, the evolutionary rate is ρ.

Results Of The Four Method Comparison

Table 1. Running Time Comparison For 200 Replication

Figure 1. Mean of Frobenius Norm Error

Figure 2. Mean of the Mean SQ Error of Simpson’s Index

Figure 3. Mean for Wasserstein Distance Error

In our data generation section, we adjust the value of alpha to 5, 15, and 50, which
correspondingly generates proportions of biological zeros at approximately 85%, 35%, and 20%
in the data. To quantify the difference between the estimated abundance ratios and the true
abundance ratios, the following metrics are used: Frobenius Norm Error, Mean Squared Error of
Simpson’s Index, and Wasserstein Distance Error, primarily focusing on the differences between
estimated and true abundances. Overall, the methods Z‐composition and Phylo‐MDA perform
the best in all three scenarios, while ZIPPCA performs the worst compared to the others. The
performance of Mbimpute lies between the best and the worst methods.
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