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1. Introduction

1.1. Challenges in Analyzing 16S rRNA Gene Sequence Data.
Microbiome data are extremely important for understanding the com-
position of microbial communities, leading to impactful applications in
studying diseases in both humans and plants.
Recently, 16S rRNA gene sequencing has become a popular method to
perform microbial community studies. Despite the popularity of this
method, there are considerable difficulties with analyzing 16S rRNA
gene sequence data. Firstly, the number and diversity of species and
genes present require concentrating on what is important. Moreover,
the data shows the relative abundance of each species[1]. Secondly,
a large portion of zeros in these datasets poses challenges for data
analysis[2]. Lastly, a lack of a universally recognized way to handle
16S rRNA data prevents meaningful comparisons[3, 4].
In this project, we develop a novel data generator that makes use of
phylogenetic tree distance information. Systematic simulation stud-
ies are conducted using this proposed data generator to compare four
advanced methods for handling zero-inflation microbiome data.

1.2. Operational Taxonomic Units (OTUs).
Our project focuses on Operational Taxonomic Units (OTUs) counts.
OTUs are groups of closely related 16S-rRNA gene sequences. These
sequences resemble fingerprints for several bacteria. Researchers utilize
16S rRNA sequencing to investigate bacteria[5]. This approach gener-
ates a large amount of data, with each sequence representing a single
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bacterium. Grouping comparable sequences into OTUs facilitates the
management of a large number of species. We can assume that identical
16S rRNA sequences indicate that the microbes are related. However,
the definitions of OTUs can change. A modest difference in similarity
level can result in distinct groupings of sequences.

1.3. Phylogenetic Tree. phylogenetic trees represent ancestor infor-
mation between the species that finally leads to one joint ancestor[6].
These trees were based on genetic information, where each stem rep-
resents a different but separate evolutionary path[7]. The evolutionary
past is assessed with the help of sequence similarities and differences,
using sequence distance, parsimony, and maximum likelihood[8].

2. Recent Four Methods for Handling Zeros

Due to the challenges of analyzing microbiome data collected via
16S rRNA sequencing, researchers have developed various tools.[9]In
this section, four recent methods for handling zeros will be introduced.

2.1. Bayesian-Multiplicative Replacement Method.

Mart́ın-Fernández et al. proposed a Bayesian-multiplicative treat-
ment in 2015.[10] This method primarily addresses the challenge of
compositional data in microbiome datasets collected via 16S rRNA se-
quencing. It involves creating a compositional vector of counts that in-
cludes some zero values, and then using a posterior Bayesian estimate
to replace each zero with an expected value. This approach utilizes
information from the total zero counts and prior data to derive these
Bayesian estimates. However, it does not incorporate information from
the phylogenetic tree.

2.2. MBImpute.

The mbImpute method is the first imputation method for micro-
biome data proposed by Jiang et al[11]. In 2021.This method distin-
guishes between biological zeros, sampling zeros, and technical zeros in
microbiome data. Biological zeros represent the true absence of taxa
in microbiome samples. In contrast, technical and sampling zeros are
not truly absent; they may not appear due to limited sample size or
technical measurement errors. The MbImpute method does not assume
that all zeros are truly absent. Instead, it uses information from the
phylogenetic tree and sample covariates to impute zeros to non-zero
values. This imputation aims to achieve a ’True’ microbiome dataset,
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where ’True’ indicates that the data accurately reflect the actual sam-
ple situation, with only biological zeros remaining.

2.3. Zero inflated probabilistic PCA model.
Zeng et al. introduced a novel approach termed zero-inflated prob-
abilistic PCA (ZIPPCA) in 2022[12].Many samples contain numerous
zeros, indicating the non-existence of certain taxa. This method defines
a Bernoulli random variable for each taxa, representing the probability
that a taxa truly exists. By counting the total number of all existing
taxa in every sample, we can calculate the true abundance. Using cor-
relations across taxa and the phylogenetic tree, the ZIPPCA method
processes multivariate abundance data directly. Instead of convert-
ing raw abundance data into compositions or relative abundances, this
method employs an empirical Bayes approach to infer microbial com-
positions.

2.4. Zero inflated Dirichlet tree multinomial model.

Zhou et al. proposed a Zero-Inflated Dirichlet Tree Multinomial dis-
tribution to handle zero-inflated micro biome data in 2021[13].ZIDTM
is adept at handling data sparsity, compositionality, and high dimen-
sionality by setting a multivariate distribution. A notable challenge
introduced is the multiple possible orderings of child nodes for each
taxa. To address this, different ZIDM models are applied to every pos-
sible outcome to identify the best fitting model. This step requires
using the phylogenetic tree to determine the child taxa for each taxa.
An empirical Bayes approach is then employed to transform counts
into non-zero relative abundances, which can enhance the quality of
the posterior mean transformation.

3. A novel data generator

The proposed data generative model aims to identify different sources
of zero values based on phylogenetic tree distance. The rationale for
introducing the phylogenetic tree distance is closely related species are
expected to have similar abundance rates.

Before introducing the data generated model, firstly we will explain
the following notations:

3.1. Notation.

• Let j ∈ (1, 2, 3, ..., K) be the index of taxa and let the i ∈
(1, 2, 3, ..., N) be the index of sample.
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• OTU count matrix, denoted by Y = (Yij), i = 1, ..., N ; j =
1, ..., K.

• πij indicates the relative abundance of taxon j in sample i.
• Distance matrix is D = (djk), j, k = 1, 2, ..., K, where djk is
phylogenetic tree distance between taxa j and k.

3.2. Model.

First, we define the latent parameter space δj to signify the presence
of taxa. If δj = 1, then taxa j is absent; otherwise, if δj = 0, then taxa
j is present. We utilize the Zero-Inflated Logistic Normal Multinomial
Model (ZILNM model) [14][15][16].
Our simulation assumes a constant existence probability for each taxon,
utilizing the phylogenetic tree distance. We denote P once δj = 1, with
α being parameter control probability, and π represents the non-zero
true abundance.

P (δj = 1) = 1− exp(−djK/α), j = 1, ..., K,

where djK define as the phylogenetic tree distance between taxon j and
a reference taxon K, where the label K must correspond to an existing
reference taxon. Let j1, · · · , jL denote the indices of those taxa that
exist. Obviously jL = K. Let

Uijl = log(πijl/πiK), l = 1, . . . , L− 1

Let Ui ∼ MVN(θi,Σ), where entries of variance-covariance matrix
Σlm produces by σ2 exp{−2ρlmDlm} [17].
The parameter σ2 represents the variance component, while ρlm ∈

(0,∞) indicates the evolutionary rate between taxon l and taxon m.
A ρlm approaching ∞ suggests rapid evolution between these taxa.[18]
Ni represents the total number of the OTU counts.

One can easily derive the one-to-one mapping between Ui and π.
That is,

πij1 =
exp(Uij1)

1 +
∑L−1

l=1 exp(Uijl)

...

πijL−1
=

exp(UijL−1
)

1 +
∑L−1

l=1 exp(Uijl)

πiK =
1

1 +
∑L−1

l=1 exp(Uijl)
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Then the observed OTU counts

Yi|πi ∼ Multinomial(πi, Ni).

3.3. Processing for Simulation Data.

In this simulation study, we utilized a real-world designed to inves-
tigate the correlations between dietary variables and gut microbiota,
provided by Wu et al. This experiment was conducted on a study
group of 98 healthy volunteers, referred to as ”COMBO” in the origi-
nal dataset. [19] Following management and processing by Liu et al.,
the original data employed 16S ribosomal DNA sequence data to com-
pute distances between microbial communities. [20] The ”COMBO”
dataset with 98 samples and 62 taxa, with corresponding phylogentic
tree. ”COMBO” dataset as the reference phylogenetic tree in simula-
tion study, the phylogenetic relation between the taxa will not varied
across different samples.
The produce for the simulation study is shown below:

(1) In a simulation study of data, it is necessary to specify the sam-
ple size and the total number of taxa. Here, the sample size,
denoted by N, is fixed at 98, and the total number of taxa, de-
noted by K, is set to 62.

(2) We utilized the ’cophenetic.phylo’ function to compute pairwise
distances between pairs of branch lengths in the phylogenetic
tree [21]. In this simulation study, we defined phylogenetic dis-
tance as the number of edges linking two taxa, with each edge
length representing a branch length in the phylogenetic tree.

(3) Different alpha values have varying probabilities of being bio-
logically zero. In our simulation study, we aim to compare the
performance of three scenarios, each with a different proportion
of biological zero experiments. In the first scenario, we have a
higher proportion of biological zeros with alpha equal to 5. In
the second scenario, alpha is set to 15, indicating the median
proportion of biological zeros. The last scenario has the lowest
proportion of biological zeros, with alpha set to 50.

(4) A smaller value of θ corresponds to a higher probability of ob-
taining a zero sample. The parameter θ follows a normal distri-
bution with varying mean parameters and a standard deviation
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of 1. The mean parameters are set at 1 and 4.

(5) To compute the covariate matrix Σ, we set the variance com-
ponent σ to be equal to 2, and we assume a fixed evolutionary
rate between taxa, ρ, equal to 1.

4. Results Of The Four Method Comparison

4.1. Frobenius Norm Error.

The Frobenius norm error is presented as follow:

√∑n
i=1

∑k
j=1(πij − π̂ij)2

The Frobenius norm is to found out the difference between two ma-
trices that is true abundance matrix and estimaye abundance matrix,
Let π̂ij represent the estimated abundance and πij represent the true
abundance. By summing the differences between the estimated and
true abundances for each sample and each taxa, and then taking the
square root of the result, we obtain a measure of how closely the im-
putation results approximate the actual results.In other words, a lower
value of Frobenius norm error[22] implies that, on average, each entry
in the imputed matrix closely approximates it’s corresponding entry in
the true abundance matrix.

4.2. Mean squared error of Simpson’s Index.

The mean squared error of the Simpson’s index[23] is defined as follows:

1
n

(∑n
i=1(

∑k
j=1 π

2
ij −

∑k
j=1 π̂

2
ij)

2
)

The Simpson’s index is represents the error of biodiversity of a habi-
tat, there is not much difference between the mean squared error of
Simpson’s Index and the Frobenius norm error, as both equations pri-
marily involve the estimated abundance and true abundance. The
mean squared error of Simpson’s Index involves squaring each main
term before calculating the differences and summing across all sam-
ples. One significant difference from the Frobenius norm error is that,
after summing the differences between the estimated and true abun-
dances, the total is divided by the sample size n. This represents,
on average, how far the predicted values deviate from the true values
in a single sample. A lower mean squared error for Simpson’s Index
indicates better performance of that method.
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4.3. Wasserstein Distance Error.

The waserstein distance error is data recovery between the estimate
abundance and true abundance. The goal of Wasserstein Distance
Error[24] is still to found out prediction that is estimate abundance
how far from true abundance. The first step is to found out the mean
of true abundance that is πij by summing up all sample true abundance
and divide by sample size n, then using some procedure to compute
mean of estimate abundance that is π̂ij.

The second step is to compute the two standard deviation σ̂j,σ̂
∗
j .The

formulas are :

σ̂j =
√
1/(n− 1)

∑n
i=1(πij − πij)2

σ̂∗
j =

√
1/(n− 1)

∑n
i=1(π̂ij − π̂ij)2

The third step is to taking the ratio between mean and standard
deviation that can be represents by :

(r = {r1, r2, . . . , rK})

(r∗ = {r∗1, r∗2, . . . , r∗K})
where rj =

πij

σj
and r∗j =

π̂ij

σ̂∗
j

The last step is transform these 2 ratio vector into order statistics
and the mean error of Waserstein distance is :

1/K
∑K

j=1

∣∣rj − r∗j
∣∣

Note here r∗j and rj are order statistics

4.4. Results In Three scenario.

In our data generation section, we adjust the value of alpha to 5, 15,
and 50, which correspondingly generates proportions of biological zeros
at approximately 85%, 35%, and 20% in the data. Our goal is to evalu-
ate which methods perform best under different proportions of biologi-
cal and sampling zeros across 200 iterations. We use three standards for
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Figure 1. Frobenius Norm error

Figure 2. Mean Squared Error of Simpson’s index

assessment: Frobenius Norm Error, Mean Squared Error of Simpson’s
Index, and Wasserstein Distance Error, primarily focusing on the dif-
ferences between estimated and true abundances. The horizontal line
in the visualization represents four methods. For each method, there
are three bars representing the three scenarios adjusted by the alpha
parameter. Overall, the methods Z-composition and Phylo-MDA per-
form the best in all three scenarios, while ZIPPCA performs the worst
compared to the others. The performance of Mbimpute lies between
the best and the worst methods.The last graph is about the time con-
suming in every method, the method of Mbimpute cost more time
than others method and next follow by method of ZIPPCA.As we can
see, The most accurate and effeiency methods are Z-compositions and
Phylo-MDA in all three scenarios cross 200 iterations.
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Figure 3. Wasserstein Distance Error

Figure 4. Time
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